Find a matrix X such that AX = B. A = 4 3 5 4 B = 2 -2 3-4 -2 4 Find a matrix X such that AX= B. Select the correct choice below and, if necessary, fill in the answer box to complete your cha O A. X= OB. The matrix is not invertible and therefore there is no matrix X.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
### Linear Algebra Problem: Solving for Matrix X

In this exercise, you are required to find a matrix \( X \) such that the product of matrices \( A \) and \( X \) equals matrix \( B \).

Given:
\[ 
A = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 & -4 \\ -2 & -2 & 4 \end{bmatrix} 
\]

To solve this, follow these steps:

1. **Evaluate the Invertibility of Matrix \( A \)**:
   - Calculate the determinant of \( A \):
     \[
     \text{det}(A) = (4 \cdot 4) - (3 \cdot 5) = 16 - 15 = 1
     \]
   - Since the determinant is non-zero, matrix \( A \) is invertible.

2. **Compute \( A^{-1} \)**:
   - Use the formula for the inverse of a 2x2 matrix:
     \[
     A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
     \]
   - For matrix \( A = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \):
     \[
     A^{-1} = \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix}
     \]

3. **Multiply \( A^{-1} \) by \( B \)**:
   - Execute the matrix multiplication:
     \[
     X = A^{-1} B
     \]
     \[
     X = \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 & -4 \\ -2 & -2 & 4 \end{bmatrix}
     \]

4. **Calculate \( X \)**:
   - Perform the multiplication to find each element of \( X \):
     \[
     X = \begin{bmatrix} (4 \cdot 2 + (-3) \cdot (-2))
Transcribed Image Text:### Linear Algebra Problem: Solving for Matrix X In this exercise, you are required to find a matrix \( X \) such that the product of matrices \( A \) and \( X \) equals matrix \( B \). Given: \[ A = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 & -4 \\ -2 & -2 & 4 \end{bmatrix} \] To solve this, follow these steps: 1. **Evaluate the Invertibility of Matrix \( A \)**: - Calculate the determinant of \( A \): \[ \text{det}(A) = (4 \cdot 4) - (3 \cdot 5) = 16 - 15 = 1 \] - Since the determinant is non-zero, matrix \( A \) is invertible. 2. **Compute \( A^{-1} \)**: - Use the formula for the inverse of a 2x2 matrix: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \] - For matrix \( A = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix} \): \[ A^{-1} = \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix} \] 3. **Multiply \( A^{-1} \) by \( B \)**: - Execute the matrix multiplication: \[ X = A^{-1} B \] \[ X = \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 & -4 \\ -2 & -2 & 4 \end{bmatrix} \] 4. **Calculate \( X \)**: - Perform the multiplication to find each element of \( X \): \[ X = \begin{bmatrix} (4 \cdot 2 + (-3) \cdot (-2))
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,