Find a degree 3 Taylor polynomial approximation of f(x) = (1+x)¹/2 centered at 0.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question

Need help

**Finding a Degree 3 Taylor Polynomial Approximation**

**Objective:**  
Determine the degree 3 Taylor polynomial approximation of the function \( f(x) = (1 + x)^{1/2} \) centered at 0.

**Steps:**

1. **Identify the Function:**  
   The function given is \( f(x) = (1 + x)^{1/2} \).

2. **Taylor Series Formula:**  
   The Taylor series expansion of a function \( f(x) \) centered at \( a \) is:
   \[ f(x) \approx \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^n \]
   For this problem, \( a = 0 \) and \( N = 3 \).

3. **Compute Derivatives:**  
   - \( f(x) = (1 + x)^{1/2} \)
   - \( f'(x) = \frac{1}{2}(1 + x)^{-1/2} \)
   - \( f''(x) = -\frac{1}{4}(1 + x)^{-3/2} \)
   - \( f'''(x) = \frac{3}{8}(1 + x)^{-5/2} \)

4. **Evaluate at \( x = 0 \):**  
   - \( f(0) = 1 \)
   - \( f'(0) = \frac{1}{2} \)
   - \( f''(0) = -\frac{1}{4} \)
   - \( f'''(0) = \frac{3}{8} \)

5. **Construct the Taylor Polynomial:**
   \[
   P_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3
   \]
   \[
   P_3(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3
   \]

**Conclusion:**

The degree 3 Taylor polynomial approximation of \( f(x) = (1 + x)^{1/2} \) centered at
Transcribed Image Text:**Finding a Degree 3 Taylor Polynomial Approximation** **Objective:** Determine the degree 3 Taylor polynomial approximation of the function \( f(x) = (1 + x)^{1/2} \) centered at 0. **Steps:** 1. **Identify the Function:** The function given is \( f(x) = (1 + x)^{1/2} \). 2. **Taylor Series Formula:** The Taylor series expansion of a function \( f(x) \) centered at \( a \) is: \[ f(x) \approx \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^n \] For this problem, \( a = 0 \) and \( N = 3 \). 3. **Compute Derivatives:** - \( f(x) = (1 + x)^{1/2} \) - \( f'(x) = \frac{1}{2}(1 + x)^{-1/2} \) - \( f''(x) = -\frac{1}{4}(1 + x)^{-3/2} \) - \( f'''(x) = \frac{3}{8}(1 + x)^{-5/2} \) 4. **Evaluate at \( x = 0 \):** - \( f(0) = 1 \) - \( f'(0) = \frac{1}{2} \) - \( f''(0) = -\frac{1}{4} \) - \( f'''(0) = \frac{3}{8} \) 5. **Construct the Taylor Polynomial:** \[ P_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 \] \[ P_3(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 \] **Conclusion:** The degree 3 Taylor polynomial approximation of \( f(x) = (1 + x)^{1/2} \) centered at
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning