Find a control function u(t) : [0,infinity) -> R such that (1) l u(t) l smaller than or equal to 2 for all t in [0,infinity) and 2) u steers \begin{pmatrix}1\\ 1\end{pmatrix} to \begin{pmatrix}0\\ 0\end{pmatrix} where the control system is given by \left(\begin{pmatrix}x\\ y\end{pmatrix}\right)^' = \begin{pmatrix}0&1\\ -1&0\end{pmatrix} \begin{pmatrix}x\\ y\end{pmatrix} + \begin{pmatrix}0\\ 1\end{pmatrix} u(t)
Find a control function u(t) : [0,infinity) -> R such that (1) l u(t) l smaller than or equal to 2 for all t in [0,infinity) and 2) u steers \begin{pmatrix}1\\ 1\end{pmatrix} to \begin{pmatrix}0\\ 0\end{pmatrix} where the control system is given by \left(\begin{pmatrix}x\\ y\end{pmatrix}\right)^' = \begin{pmatrix}0&1\\ -1&0\end{pmatrix} \begin{pmatrix}x\\ y\end{pmatrix} + \begin{pmatrix}0\\ 1\end{pmatrix} u(t)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Find a control function u(t) : [0,infinity) -> R such that (1) l u(t) l smaller than or equal to 2 for all t in [0,infinity) and 2) u steers \begin{pmatrix}1\\ 1\end{pmatrix} to \begin{pmatrix}0\\ 0\end{pmatrix} where the control system is given by \left(\begin{pmatrix}x\\ y\end{pmatrix}\right)^' = \begin{pmatrix}0&1\\ -1&0\end{pmatrix} \begin{pmatrix}x\\ y\end{pmatrix} + \begin{pmatrix}0\\ 1\end{pmatrix} u(t)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 1 steps with 4 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,