Find a Cartesian equation for the curve given by the polar equation T = 4 sin 0. 73°F 1. (x - 2)² + y² + 4 = 0 2. x² + (y-2)² = 4 3. (x - 2)² + y² = 4 4. (x + 2)² + y² = 4 5. x² + (y + 2)² + 4 = 0 6. x² + (y-2)² + 4 = 0 7. (x + 2)² + y² + 4 = 0 8. x² + (y + 2)² = 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Finding a Cartesian Equation for a Curve**

We are tasked with finding a Cartesian equation for the curve defined by the polar equation:

\[ r = 4 \sin \theta \]

**Multiple Choice Options:**

1. \((x - 2)^2 + y^2 + 4 = 0\)

2. \(x^2 + (y - 2)^2 = 4\)

3. \((x - 2)^2 + y^2 = 4\)

4. \((x + 2)^2 + y^2 = 4\)

5. \(x^2 + (y + 2)^2 + 4 = 0\)

6. \(x^2 + (y - 2)^2 + 4 = 0\)

7. \((x + 2)^2 + y^2 + 4 = 0\)

8. \(x^2 + (y + 2)^2 = 4\) 

**Explanation for Solution:**

To find the Cartesian form, recall the polar to Cartesian coordinate transformations:
- \( x = r \cos \theta \)
- \( y = r \sin \theta \)

From \( r = 4 \sin \theta \), we know that \( r = y \), 
so substituting \( y = 4 \sin \theta \), we get \( y = 4 \cdot \frac{y}{r} \).
Simplifying for \( r \), we have:
\[ r = \frac{4y}{r} \]

Square both sides: 
\[ r^2 = 4y \]

Using \( r^2 = x^2 + y^2 \), substitute to get: 
\[ x^2 + y^2 = 4y \]

Moving terms yields:
\[ x^2 + (y^2 - 4y) = 0 \]

Complete the square:
\[ x^2 + (y - 2)^2 = 4 \]

Thus, the correct Cartesian equation is option 2:
\[ x^2 + (y - 2)^2 = 4 \]
Transcribed Image Text:**Finding a Cartesian Equation for a Curve** We are tasked with finding a Cartesian equation for the curve defined by the polar equation: \[ r = 4 \sin \theta \] **Multiple Choice Options:** 1. \((x - 2)^2 + y^2 + 4 = 0\) 2. \(x^2 + (y - 2)^2 = 4\) 3. \((x - 2)^2 + y^2 = 4\) 4. \((x + 2)^2 + y^2 = 4\) 5. \(x^2 + (y + 2)^2 + 4 = 0\) 6. \(x^2 + (y - 2)^2 + 4 = 0\) 7. \((x + 2)^2 + y^2 + 4 = 0\) 8. \(x^2 + (y + 2)^2 = 4\) **Explanation for Solution:** To find the Cartesian form, recall the polar to Cartesian coordinate transformations: - \( x = r \cos \theta \) - \( y = r \sin \theta \) From \( r = 4 \sin \theta \), we know that \( r = y \), so substituting \( y = 4 \sin \theta \), we get \( y = 4 \cdot \frac{y}{r} \). Simplifying for \( r \), we have: \[ r = \frac{4y}{r} \] Square both sides: \[ r^2 = 4y \] Using \( r^2 = x^2 + y^2 \), substitute to get: \[ x^2 + y^2 = 4y \] Moving terms yields: \[ x^2 + (y^2 - 4y) = 0 \] Complete the square: \[ x^2 + (y - 2)^2 = 4 \] Thus, the correct Cartesian equation is option 2: \[ x^2 + (y - 2)^2 = 4 \]
Expert Solution
Step 1

We have to find out

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning