Find a bif a= (4, - 1,5) ar . b = (-3, 8, 5).

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Are the vectors orthogonal? Briefly explain

### Problem Statement

Find \( \vec{a} \cdot \vec{b} \) if \( \vec{a} = \langle 4, -1, 5 \rangle \) and \( \vec{b} = \langle -3, 8, 5 \rangle \).

### Explanation

The given problem is asking for the dot product of two vectors \( \vec{a} \) and \( \vec{b} \). The vectors are specified in component form:

- Vector \( \vec{a} \) is \( \langle 4, -1, 5 \rangle \).
- Vector \( \vec{b} \) is \( \langle -3, 8, 5 \rangle \).

### Solution

The dot product of two vectors \( \vec{a} = \langle a_1, a_2, a_3 \rangle \) and \( \vec{b} = \langle b_1, b_2, b_3 \rangle \) is calculated as follows:

\[ \vec{a} \cdot \vec{b} = (a_1 \times b_1) + (a_2 \times b_2) + (a_3 \times b_3) \]

Substitute the given components:
\[ \vec{a} \cdot \vec{b} = (4 \times -3) + (-1 \times 8) + (5 \times 5) \]

Calculate each term:
\[ = (-12) + (-8) + 25 \]

Add the terms together:
\[ = -12 - 8 + 25 = 5 \]

Thus:
\[ \vec{a} \cdot \vec{b} = 5 \]

### Conclusion

The dot product \( \vec{a} \cdot \vec{b} \) is **5**.
Transcribed Image Text:### Problem Statement Find \( \vec{a} \cdot \vec{b} \) if \( \vec{a} = \langle 4, -1, 5 \rangle \) and \( \vec{b} = \langle -3, 8, 5 \rangle \). ### Explanation The given problem is asking for the dot product of two vectors \( \vec{a} \) and \( \vec{b} \). The vectors are specified in component form: - Vector \( \vec{a} \) is \( \langle 4, -1, 5 \rangle \). - Vector \( \vec{b} \) is \( \langle -3, 8, 5 \rangle \). ### Solution The dot product of two vectors \( \vec{a} = \langle a_1, a_2, a_3 \rangle \) and \( \vec{b} = \langle b_1, b_2, b_3 \rangle \) is calculated as follows: \[ \vec{a} \cdot \vec{b} = (a_1 \times b_1) + (a_2 \times b_2) + (a_3 \times b_3) \] Substitute the given components: \[ \vec{a} \cdot \vec{b} = (4 \times -3) + (-1 \times 8) + (5 \times 5) \] Calculate each term: \[ = (-12) + (-8) + 25 \] Add the terms together: \[ = -12 - 8 + 25 = 5 \] Thus: \[ \vec{a} \cdot \vec{b} = 5 \] ### Conclusion The dot product \( \vec{a} \cdot \vec{b} \) is **5**.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning