Find a basis for the vector space of all 3 x 3 diagonal matrices. 0 0 1 0 0 1 1 0 0] [o 1 0 10 0 0 1 0 1 0 0 0 1 0 0 0 1 10 0 0 1 0 0 0 1 0 1 0 0 10,0 1 o 0 0 1 0 1 0 10 0 0 0 0 [0 0 0 0 0 0.0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 o o] 0 0 0 o o|.1 0 o 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 o|. 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 What is the dimension of this vector space?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem:**

Find a basis for the vector space of all \(3 \times 3\) diagonal matrices.

**Options:**

1. 
   \[
   \begin{pmatrix} 
   1 & 0 & 0 \\ 
   0 & 0 & 0 \\ 
   0 & 0 & 0 
   \end{pmatrix}, 
   \begin{pmatrix} 
   0 & 0 & 0 \\ 
   0 & 1 & 0 \\ 
   0 & 0 & 0 
   \end{pmatrix}, 
   \begin{pmatrix} 
   0 & 0 & 0 \\ 
   0 & 0 & 0 \\ 
   0 & 0 & 1 
   \end{pmatrix}
   \]

2. 
   \[
   \begin{pmatrix} 
   1 & 0 & 0 \\ 
   0 & 1 & 0 \\ 
   0 & 0 & 0 
   \end{pmatrix}, 
   \begin{pmatrix} 
   0 & 0 & 0 \\ 
   1 & 0 & 0 \\ 
   0 & 0 & 0 
   \end{pmatrix}, 
   \begin{pmatrix} 
   0 & 0 & 1 \\ 
   0 & 0 & 0 \\ 
   0 & 1 & 0 
   \end{pmatrix}
   \]

3. 
   \[
   \begin{pmatrix} 
   1 & 0 & 0 \\ 
   0 & 0 & 0 \\ 
   0 & 0 & 0 
   \end{pmatrix}, 
   \begin{pmatrix} 
   0 & 0 & 0 \\ 
   0 & 1 & 0 \\ 
   0 & 0 & 0 
   \end{pmatrix}, 
   \begin{pmatrix} 
   0 & 0 & 0 \\ 
   0 & 0 & 0 \\ 
   0 & 0 & 1 
   \end{pmatrix}
   \]

4. 
   \[
   \begin{pmatrix}
Transcribed Image Text:**Problem:** Find a basis for the vector space of all \(3 \times 3\) diagonal matrices. **Options:** 1. \[ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] 2. \[ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \] 3. \[ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] 4. \[ \begin{pmatrix}
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,