Find 74307 mod 724 using the techniques described in Example 8.4.4 and Example 8.4.5. First compute the following. 74¹ mod 724 = 74² mod 724 = 744 mod 724 = 748 mod 724 = 7416 7432 7464 74128 256 742 mod 724 = mod 724 = mod 724 = mod 724 = mod 724 = Since 307 = 256 + 32 + 16 + 2 + 1, 74307 mod 724 = (742567432.74 . = - ((74256 mod 724) · (7432 mod 724) · (74 11 -74²2-74¹) mod 724 724) (742 mod 724). (74¹ mod 724)) mod 724 mod 724 .
Find 74307 mod 724 using the techniques described in Example 8.4.4 and Example 8.4.5. First compute the following. 74¹ mod 724 = 74² mod 724 = 744 mod 724 = 748 mod 724 = 7416 7432 7464 74128 256 742 mod 724 = mod 724 = mod 724 = mod 724 = mod 724 = Since 307 = 256 + 32 + 16 + 2 + 1, 74307 mod 724 = (742567432.74 . = - ((74256 mod 724) · (7432 mod 724) · (74 11 -74²2-74¹) mod 724 724) (742 mod 724). (74¹ mod 724)) mod 724 mod 724 .
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:Find 74307
First compute the following.
74¹ mod 724 =
74² mod 724 =
744 mod 724 =
748 mod 724 =
7416
mod 724 =
7432 mod 724 =
7464 mod 724 =
74128 mod 724 =
74
mod 724 using the techniques described in Example 8.4.4 and Example 8.4.5.
256 mod 724 =
Since 307 256 + 32 + 16 + 2 + 1,
mod 724 = (74256.7432.74-
74307
=
1.74².74¹) mod 724
(74256 mod 724) (7432 mod 724) (74
mod 724
d 724) · (74² mod 724) · (74¹ mod 724))mod 724
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

