Fill in the blanks in the following truth table. -ppvr (pvr) →q ? v Pqr TTT ? TFT ? ♥ FTT ? ♥ FFT ? TITF ? TFF ? FTF ? ♥ FFF ? > ? ? ? ? ? ? ?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Question 11
**Objective:**
Fill in the blanks in the following truth table.

**Instructions:** Use the given initial truth values to complete the columns for the logical expressions ~p, p ∨ r, and (~p ∨ r) → q.

| p | q | r | ~p | p ∨ r  | (~p ∨ r) → q |
|---|---|---|----|-------|--------------|
| T | T | T |    |       |              |
| T | F | T |    |       |              |
| T | T | F |    |       |              |
| T | F | F |    |       |              |
| F | T | T |    |       |              |
| F | T | F |    |       |              |
| F | F | T |    |       |              |
| F | F | F |    |       |              |

**Explanation:**
- **Column p, q, r:** Initial truth values for variables.
- **Column ~p:** Logical negation of p. If p is TRUE (T), ~p is FALSE (F). If p is FALSE (F), ~p is TRUE (T).
- **Column (p ∨ r):** Logical disjunction (OR) between p and r. The result is TRUE if at least one of p or r is TRUE.
- **Column (~p ∨ r) → q:** Logical implication. The expression (~p ∨ r) is TRUE if either ~p or r is TRUE. The implication (~p ∨ r) → q is TRUE except when ~p ∨ r is TRUE and q is FALSE.

### Answer key:

| p    | q    | r    | ~p | p ∨ r  | (~p ∨ r) → q |
|------|------|------|----|--------|--------------|
| TRUE | TRUE | TRUE | F  | TRUE   | TRUE         |
| TRUE | FALSE| TRUE | F  | TRUE   | FALSE        |
| TRUE | TRUE | FALSE| F  | TRUE   | TRUE         |
| TRUE | FALSE| FALSE| F  | FALSE  | TRUE         |
| FALSE| TRUE | TRUE | T  | TRUE   | TRUE         |
| FALSE| TRUE | FALSE| T  | FALSE  | TRUE         |
| FALSE| FALSE| TRUE | T
Transcribed Image Text:### Question 11 **Objective:** Fill in the blanks in the following truth table. **Instructions:** Use the given initial truth values to complete the columns for the logical expressions ~p, p ∨ r, and (~p ∨ r) → q. | p | q | r | ~p | p ∨ r | (~p ∨ r) → q | |---|---|---|----|-------|--------------| | T | T | T | | | | | T | F | T | | | | | T | T | F | | | | | T | F | F | | | | | F | T | T | | | | | F | T | F | | | | | F | F | T | | | | | F | F | F | | | | **Explanation:** - **Column p, q, r:** Initial truth values for variables. - **Column ~p:** Logical negation of p. If p is TRUE (T), ~p is FALSE (F). If p is FALSE (F), ~p is TRUE (T). - **Column (p ∨ r):** Logical disjunction (OR) between p and r. The result is TRUE if at least one of p or r is TRUE. - **Column (~p ∨ r) → q:** Logical implication. The expression (~p ∨ r) is TRUE if either ~p or r is TRUE. The implication (~p ∨ r) → q is TRUE except when ~p ∨ r is TRUE and q is FALSE. ### Answer key: | p | q | r | ~p | p ∨ r | (~p ∨ r) → q | |------|------|------|----|--------|--------------| | TRUE | TRUE | TRUE | F | TRUE | TRUE | | TRUE | FALSE| TRUE | F | TRUE | FALSE | | TRUE | TRUE | FALSE| F | TRUE | TRUE | | TRUE | FALSE| FALSE| F | FALSE | TRUE | | FALSE| TRUE | TRUE | T | TRUE | TRUE | | FALSE| TRUE | FALSE| T | FALSE | TRUE | | FALSE| FALSE| TRUE | T
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,