Fill in each matrix for diagonalization of the matrix A = A = PDP-1 3 Ex: 5 30 1 4 -6 19 1 1 IG

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Diagonalization of a Matrix**

For the given matrix \( A \):

\[
A = \begin{bmatrix} 4 & -6 \\ 1 & -1 \end{bmatrix}
\]

**Task:**

Fill in each matrix for the diagonalization of matrix \( A \), represented as \( A = PDP^{-1} \).

The equation is given as:

\[
A = \begin{bmatrix} 3 & 2 \\ \text{Ex: 5} & 1 \end{bmatrix} 
\begin{bmatrix} \phantom{} & \phantom{} \\ \phantom{} & 1 \end{bmatrix} 
\begin{bmatrix} 1 & \phantom{} \\ -1 & \phantom{} \end{bmatrix}
\]

**Explanation:**

- The first bracketed matrix represents the matrix \( P \).
- The second bracketed matrix requires you to find the missing entries to form the diagonal matrix \( D \).
- The third bracketed matrix represents the inverse matrix \( P^{-1} \).

**Objective:**

Determine the missing values in the matrices such that the equation \( A = PDP^{-1} \) holds true.
Transcribed Image Text:**Diagonalization of a Matrix** For the given matrix \( A \): \[ A = \begin{bmatrix} 4 & -6 \\ 1 & -1 \end{bmatrix} \] **Task:** Fill in each matrix for the diagonalization of matrix \( A \), represented as \( A = PDP^{-1} \). The equation is given as: \[ A = \begin{bmatrix} 3 & 2 \\ \text{Ex: 5} & 1 \end{bmatrix} \begin{bmatrix} \phantom{} & \phantom{} \\ \phantom{} & 1 \end{bmatrix} \begin{bmatrix} 1 & \phantom{} \\ -1 & \phantom{} \end{bmatrix} \] **Explanation:** - The first bracketed matrix represents the matrix \( P \). - The second bracketed matrix requires you to find the missing entries to form the diagonal matrix \( D \). - The third bracketed matrix represents the inverse matrix \( P^{-1} \). **Objective:** Determine the missing values in the matrices such that the equation \( A = PDP^{-1} \) holds true.
Expert Solution
Step 1: Given:

A equals open square brackets table row 4 cell negative 6 end cell row 1 cell negative 1 end cell end table close square brackets

We have to fill in each matrix for diagonalisable of the matrix.

A equals P D P to the power of negative 1 end exponent equals open square brackets table row 3 2 row minus 1 end table close square brackets open square brackets table row minus minus row minus 1 end table close square brackets open square brackets table row 1 minus row cell negative 1 end cell minus end table close square brackets

steps

Step by step

Solved in 3 steps with 18 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,