Figure 4 shows a current mirror based on MOSFETS. Derive a formula relating the input current Iin to the output current Iout, and the output resistance, for the current mirror of Figure 4 stating any assumptions. (a)
MOSFET (Metal Oxide Semiconductor Field Effect Transistor)
MOSFET stands for Metal Oxide Silicone Field Effect Transistor or Metal Oxide Semiconductor Field Effect Transistor. It is a type of IGFET, which means Insulated Gate Field Effect Transistor. A MOSFET has four-terminals namely gate (G), drain (D), source (S), and body (B). The body of the MOSFET is connected to the source terminal and it forms a three-terminal device. It is used in both the analog and digital circuits.
Power MOSFET
The power MOSFET transistor structures are enhancement types. The voltage rating is enhanced in the enhancement-mode MOSFETs by the use of a drift layer. The MOSFET generally contains four layers. The middle layer is the p-type layer also known as the body, whereas the n-type layer is called the drift layer or region. The drift region decides the breakdown voltage, and hence it is the lightly doped region in power MOSFETs. The first and last layers are the n+ layers. The first layer and the last layers are the source and drain layers. The structure of N-channel MOSFET (e-MOSFET) is n+ p n- n+, but the shape of p-channel is the opposite doping shape.
![Q4
Figure 4 shows a current mirror based on MOSFETS.
Derive a formula relating the input current Iin to the output current Iout , and the
output resistance, for the current mirror of Figure 4 stating any assumptions.
(a)
Iin
Iout
M1
M2
Vss = 0 V
Figure 4
(b)
Design a current mirror with improved output resistance and current balance
using 4 NMOS transistors. Stating any assumption, derive the new output
resistance and compare this with the current mirror in Figure 4. Why the output
resistance value is important for a current mirror operation?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd19722f0-ad57-46c7-85cc-fbe792f30d47%2F9e0597b6-55fc-498e-94cd-262db7a5e086%2Fa9543m_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)