f. Let fiz) be the branch 2-¹+² = exp[(-1+²) logz], 12100, 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve 4
#1. Evaluate S fizidz if f(z) =
с
(a) the semicircle
(b) the semicircle
#2. Evaluate
#6. Find
S.
S. the T² de and
dz
е
i
#7. Find
2=2e, FOST
2 = 2e¹d, T≤052π
#3. Evaluate √( ² + 2 ) dz, where C is the straight line path
from 1 to 2.
$
#4. Let fiz) be the branch
2+¹+² = exp[(+1+i) log 2], 12120, 0<arga < 211
z-iti
and C is the positive oriented unit cicle |2|=1₁
find & fizidz
$
2+4
2
#5. Show that & fiz) dz =0 where C is the circle /2/=/
in positive direction and when
(1) f(z) =
2²
2-4,
(b) f(²)= 2 ++22+2
ZH1
2(2-3)²
z²+3
(2²4)(2+i)
-π+zi
and C is
dz
Cos (2) dz
dz
where C is 121= 2/12.
where C is 12-31=1.
Transcribed Image Text:#1. Evaluate S fizidz if f(z) = с (a) the semicircle (b) the semicircle #2. Evaluate #6. Find S. S. the T² de and dz е i #7. Find 2=2e, FOST 2 = 2e¹d, T≤052π #3. Evaluate √( ² + 2 ) dz, where C is the straight line path from 1 to 2. $ #4. Let fiz) be the branch 2+¹+² = exp[(+1+i) log 2], 12120, 0<arga < 211 z-iti and C is the positive oriented unit cicle |2|=1₁ find & fizidz $ 2+4 2 #5. Show that & fiz) dz =0 where C is the circle /2/=/ in positive direction and when (1) f(z) = 2² 2-4, (b) f(²)= 2 ++22+2 ZH1 2(2-3)² z²+3 (2²4)(2+i) -π+zi and C is dz Cos (2) dz dz where C is 121= 2/12. where C is 12-31=1.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,