F. Let a = :(a1, a2, ..., an) E R" where ||a|| +0 and let be R. Let SC R" where S = {(x1, x2, .., Xn) E R" : a1x1+ a2X2+ .. + anXn = b} =(0,0,0, ..., 0) E R" to the set S is ||a|| · Show that the shortest distance from Hint: Let x = (x1, x2, ..., xn) E S. We wan to minimize ||x – || subject to a1x1 + a2x2+ + anxn = b ... Let f(x1, x2, .., xn) = }||(x1, x2, .., Xn)||² and g(x1, x2, ..., Xn) = a1X1+azx2+...+an&n=b 2:.... and apply Lagrange Multiplier.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please answer
F.
Let a = (a1, a2,
.., an) E R" where ||a|| + 0 and let b e R. Let SC R" where
S = {(x1, x2, ..., Xn) E R" : a1X1+ a2X2+ ... + anxn = b}
Show that the shortest distance from 0 = (0,0,0, ..., 0) E R" to the set S is
||a||
Hint: Let x =
(x1, x2, ..., xn) E S. We wan to minimize
||x – ||
subject to
a1X1+ a2x2 +
+ anxn = 6
...
Let f(x1, x2,.., Xn)
|(*1, x2, ..., xn)||² and g(x1, x2, ..., Xn) = a1x1+a2x2+...+anXn–b
....
and apply Lagrange Multiplier.
Transcribed Image Text:F. Let a = (a1, a2, .., an) E R" where ||a|| + 0 and let b e R. Let SC R" where S = {(x1, x2, ..., Xn) E R" : a1X1+ a2X2+ ... + anxn = b} Show that the shortest distance from 0 = (0,0,0, ..., 0) E R" to the set S is ||a|| Hint: Let x = (x1, x2, ..., xn) E S. We wan to minimize ||x – || subject to a1X1+ a2x2 + + anxn = 6 ... Let f(x1, x2,.., Xn) |(*1, x2, ..., xn)||² and g(x1, x2, ..., Xn) = a1x1+a2x2+...+anXn–b .... and apply Lagrange Multiplier.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,