F. Let a = (a1, a2, .., an) E R" where ||a|| +0 and let b e R. Let SC R" where S = {(x1, x2, .., xn) E R" : a1x1+a2X2+... + aŋXn = b} Show that the shortest distance from 0 = (0, 0, 0, .., 0) e R" to the set S is %3D Hint: Let x = (x1, x2, ..., xn) E S. We wan to minimize ||x – ở|| subject to A1X1+a2X2+... + aŋXn = b Let f(x1, X2, .., "n) = }|(x1, x2, .., rn)|l² and g(x1, x2, .., m) = a1x1+a2X2+...+a„Xn-b ..., In and apply Lagrange Multiplier.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

help, answer the stated problem

F.
Let a =
(a1, a2, ..., an) e R" where ||a|| 7 0 and let b e R. Let S C R" where
S =
: {(x1, x2, ..., xn) E R" : a1x1 + a2x2 + ... + anXn = b}
Show that the shortest distance from 0 = (0, 0, 0, .., 0) E R" to the set S is
%3D
|||
Hint: Let x =
: (x1, x2, ..., xn) E S. We wan to minimize
||x – ở||
subject to
ɑ1X1+ a2x2+ ... + aŋx, = b
Let f(x1, x2, ..., xn) = }||(x1, x2, .. xn)||² and g(x1, x2, ..., "n) = a1x1+a2x2+...+a„Xn=b
%3D
and apply Lagrange Multiplier.
Transcribed Image Text:F. Let a = (a1, a2, ..., an) e R" where ||a|| 7 0 and let b e R. Let S C R" where S = : {(x1, x2, ..., xn) E R" : a1x1 + a2x2 + ... + anXn = b} Show that the shortest distance from 0 = (0, 0, 0, .., 0) E R" to the set S is %3D ||| Hint: Let x = : (x1, x2, ..., xn) E S. We wan to minimize ||x – ở|| subject to ɑ1X1+ a2x2+ ... + aŋx, = b Let f(x1, x2, ..., xn) = }||(x1, x2, .. xn)||² and g(x1, x2, ..., "n) = a1x1+a2x2+...+a„Xn=b %3D and apply Lagrange Multiplier.
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,