f) V = R³; W = {(a, b, c) e IR³ |3a + 2b − c = 0} g) V = {ax² + bx + c a, b et c = R}; {ax² + bx + cb = 0, a et c = R} h) V = {ax² + bx + cla, b et ce R}; W = {ax² + bx + c/b = 1, a et c = R} =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let V be a vector space over R, equipped with the usual operations on algebraic vectors, polynomials and sequences, and W, a non-empty subset of V, equipped with the same operations. Determine if W is a vector subspace of V. If not, justify or find a counterexample.


la définition 56
W = {(a, b, c) e R³ 3a + 2b -c=0}
g) V = {ax² + bx + cla, b et c = R};
W = {ax² + bx + cb = 0, a et c = R}
h) V = {ax² + bx+cla, b et c = R};
W = {ax² + bx + c/b = 1, a et ce R}
i) V = {ax² + bx+cla, b et c e R};
W = {ax² + bx+c|a + b + c = 0}
j) V = {(a, a, a, ...) la € R};
W = {(a, a, a, ...) a = R}
21
=(f) V = R³;
Transcribed Image Text:la définition 56 W = {(a, b, c) e R³ 3a + 2b -c=0} g) V = {ax² + bx + cla, b et c = R}; W = {ax² + bx + cb = 0, a et c = R} h) V = {ax² + bx+cla, b et c = R}; W = {ax² + bx + c/b = 1, a et ce R} i) V = {ax² + bx+cla, b et c e R}; W = {ax² + bx+c|a + b + c = 0} j) V = {(a, a, a, ...) la € R}; W = {(a, a, a, ...) a = R} 21 =(f) V = R³;
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,