(f + g)(x) use the given: f(x) (f- g)(-5) = 5x+1 2 x -9 and g(x) = (f. g)(0) 4x-2 2 x -9 to evaluate: — (x)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Problem Statement

Given the functions:

\[ f(x) = \frac{5x + 1}{x^2 - 9} \]

\[ g(x) = \frac{4x - 2}{x^2 - 9} \]

Evaluate the following:

1. \((f + g)(x)\)
2. \((f - g)(-5)\)
3. \((f \cdot g)(0)\)
4. \(\frac{f}{g}(x)\)

### Detailed Explanation

To solve these problems, we'll use the definitions and operations of functions:

1. **Addition of Functions \((f + g)(x)\):**
   
   \[
   (f + g)(x) = f(x) + g(x) = \frac{5x + 1}{x^2 - 9} + \frac{4x - 2}{x^2 - 9}
   \]

   Since the denominators are the same, we can combine the numerators:

   \[
   (f + g)(x) = \frac{(5x + 1) + (4x - 2)}{x^2 - 9} = \frac{9x - 1}{x^2 - 9}
   \]

2. **Subtraction of Functions \((f - g)(-5)\):**

   Evaluate \(f(-5)\) and \(g(-5)\):

   \[
   f(-5) = \frac{5(-5) + 1}{(-5)^2 - 9} = \frac{-25 + 1}{25 - 9} = \frac{-24}{16} = -\frac{3}{2}
   \]

   \[
   g(-5) = \frac{4(-5) - 2}{(-5)^2 - 9} = \frac{-20 - 2}{25 - 9} = \frac{-22}{16} = -\frac{11}{8}
   \]

   Subtract them:

   \[
   (f - g)(-5) = f(-5) - g(-5) = -\frac{3}{2} + \frac{11}{8} = -\frac{12}{8} + \frac{11}{8} = -\frac{1}{8}
Transcribed Image Text:### Problem Statement Given the functions: \[ f(x) = \frac{5x + 1}{x^2 - 9} \] \[ g(x) = \frac{4x - 2}{x^2 - 9} \] Evaluate the following: 1. \((f + g)(x)\) 2. \((f - g)(-5)\) 3. \((f \cdot g)(0)\) 4. \(\frac{f}{g}(x)\) ### Detailed Explanation To solve these problems, we'll use the definitions and operations of functions: 1. **Addition of Functions \((f + g)(x)\):** \[ (f + g)(x) = f(x) + g(x) = \frac{5x + 1}{x^2 - 9} + \frac{4x - 2}{x^2 - 9} \] Since the denominators are the same, we can combine the numerators: \[ (f + g)(x) = \frac{(5x + 1) + (4x - 2)}{x^2 - 9} = \frac{9x - 1}{x^2 - 9} \] 2. **Subtraction of Functions \((f - g)(-5)\):** Evaluate \(f(-5)\) and \(g(-5)\): \[ f(-5) = \frac{5(-5) + 1}{(-5)^2 - 9} = \frac{-25 + 1}{25 - 9} = \frac{-24}{16} = -\frac{3}{2} \] \[ g(-5) = \frac{4(-5) - 2}{(-5)^2 - 9} = \frac{-20 - 2}{25 - 9} = \frac{-22}{16} = -\frac{11}{8} \] Subtract them: \[ (f - g)(-5) = f(-5) - g(-5) = -\frac{3}{2} + \frac{11}{8} = -\frac{12}{8} + \frac{11}{8} = -\frac{1}{8}
Expert Solution
Step 1: Given

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,