Express the vector below in Cartesian coordinate: B = 2r sin cosc a₁ + r cose cose aer sind a ax= [2x/√(x² + y² + z²)] + {xz / [(x² + y²) * √(x² + y² + z²)]} + {[y² * √(x² + y² + z²)]/(x² + y²)} ay = [xy²/√(x² + y² + z²)] + {[xyz²] / [(x² + y²) * √(x² + y² + z²)]} − {[xy * (x² + y² + z²)] / (x² + y²)} ax= [2x² /√(x² + y² + z²)] + {xz / [(x² + y²) * √(x² + y² + z²)]} + {[y² * √(x² + y² + z2²)]/(x² + y²)} a₂ = xz²/√(x² + y² + az ay = [xy / √(x² + y² + z²)] + {[xyz²] / [(x² + y²) * √(x² + y² + z²)]} − {[xy * √(x² + y² + z²)] / (x² + y²)} a₂ = (xz)/√(x² + y² + z²) z²) a₂ = (xz) / (x² + y² + z²) ax = [x² / √(x² + y² + z²)] + {xz / [(x² + y²) * √(x² + y² + z²)]} + {[y² * √(x² + y² + z²)] / (x + y)} ay = [2xy / √(x² + y² + z²)] + {[xyz²] / [(x² + y²) * √(x² + y² + z²)]}-{[xy * √(x² + y² + z²)]/(x² + y²)}
Express the vector below in Cartesian coordinate: B = 2r sin cosc a₁ + r cose cose aer sind a ax= [2x/√(x² + y² + z²)] + {xz / [(x² + y²) * √(x² + y² + z²)]} + {[y² * √(x² + y² + z²)]/(x² + y²)} ay = [xy²/√(x² + y² + z²)] + {[xyz²] / [(x² + y²) * √(x² + y² + z²)]} − {[xy * (x² + y² + z²)] / (x² + y²)} ax= [2x² /√(x² + y² + z²)] + {xz / [(x² + y²) * √(x² + y² + z²)]} + {[y² * √(x² + y² + z2²)]/(x² + y²)} a₂ = xz²/√(x² + y² + az ay = [xy / √(x² + y² + z²)] + {[xyz²] / [(x² + y²) * √(x² + y² + z²)]} − {[xy * √(x² + y² + z²)] / (x² + y²)} a₂ = (xz)/√(x² + y² + z²) z²) a₂ = (xz) / (x² + y² + z²) ax = [x² / √(x² + y² + z²)] + {xz / [(x² + y²) * √(x² + y² + z²)]} + {[y² * √(x² + y² + z²)] / (x + y)} ay = [2xy / √(x² + y² + z²)] + {[xyz²] / [(x² + y²) * √(x² + y² + z²)]}-{[xy * √(x² + y² + z²)]/(x² + y²)}
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,