Express the solution of the given initial value problem in terms of a convolution integral y" + 12y' + 32y = cos(at); y(0) = 1, y'(0) = 0 y(t) = X+/ (--) - e-) cos(a 7) dr/ -2 e-8t +e-4t -4(t-T) -8(t-r)
Express the solution of the given initial value problem in terms of a convolution integral y" + 12y' + 32y = cos(at); y(0) = 1, y'(0) = 0 y(t) = X+/ (--) - e-) cos(a 7) dr/ -2 e-8t +e-4t -4(t-T) -8(t-r)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Title: Solving Initial Value Problems Using Convolution Integrals**
**Problem Statement:**
Express the solution of the given initial value problem in terms of a convolution integral:
\[ y'' + 12y' + 32y = \cos(at); \quad y(0) = 1, \quad y'(0) = 0 \]
**Solution:**
The function \( y(t) \) is given by:
\[
y(t) = \left[ -2e^{-8t} + e^{-4t} \right] + \int_{0}^{t} \left[ \frac{1}{4} \left( e^{-4(t-\tau)} - e^{-8(t-\tau)} \right) \cos(a\tau) \right] d\tau
\]
**Explanation:**
1. **Homogeneous Solution:**
- The term \( -2e^{-8t} + e^{-4t} \) represents the homogeneous solution of the differential equation. These are the solutions obtained from solving the characteristic equation associated with the differential equation without the forcing function.
2. **Particular Solution using Convolution Integral:**
- The integral \(\int_{0}^{t} [...] d\tau\) represents the particular solution of the differential equation.
- Inside the integral, \(\frac{1}{4} \left( e^{-4(t-\tau)} - e^{-8(t-\tau)} \right)\) is the impulse response of the system.
- \(\cos(a\tau)\) is the non-homogeneous term, i.e., the forcing function.
- The convolution of the impulse response with the forcing function gives the particular solution.
This mixed approach, using both the homogeneous solution and a convolution integral for the particular solution, provides the complete solution to the initial value problem.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbf5833d1-6930-42b3-a1f0-37b0b1113f5c%2F670e0144-5902-48de-a6cd-40e8e38cde83%2F5iwldtf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Title: Solving Initial Value Problems Using Convolution Integrals**
**Problem Statement:**
Express the solution of the given initial value problem in terms of a convolution integral:
\[ y'' + 12y' + 32y = \cos(at); \quad y(0) = 1, \quad y'(0) = 0 \]
**Solution:**
The function \( y(t) \) is given by:
\[
y(t) = \left[ -2e^{-8t} + e^{-4t} \right] + \int_{0}^{t} \left[ \frac{1}{4} \left( e^{-4(t-\tau)} - e^{-8(t-\tau)} \right) \cos(a\tau) \right] d\tau
\]
**Explanation:**
1. **Homogeneous Solution:**
- The term \( -2e^{-8t} + e^{-4t} \) represents the homogeneous solution of the differential equation. These are the solutions obtained from solving the characteristic equation associated with the differential equation without the forcing function.
2. **Particular Solution using Convolution Integral:**
- The integral \(\int_{0}^{t} [...] d\tau\) represents the particular solution of the differential equation.
- Inside the integral, \(\frac{1}{4} \left( e^{-4(t-\tau)} - e^{-8(t-\tau)} \right)\) is the impulse response of the system.
- \(\cos(a\tau)\) is the non-homogeneous term, i.e., the forcing function.
- The convolution of the impulse response with the forcing function gives the particular solution.
This mixed approach, using both the homogeneous solution and a convolution integral for the particular solution, provides the complete solution to the initial value problem.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)