1 First-order Odes 2 Second-order Linear Odes 3 Higher Order Linear Odes 4 Systems Of Odes. Phase Plane. Qualitative Methods 5 Series Solutions Of Odes. Special Functions 6 Laplace Transforms 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems 8 Linear Algebra: Matrix Eigenvalue Problems 9 Vector Differential Calculus. Grad, Div, Curl 10 Vector Integral Calculus. Integral Theorems 11 Fourier Analysis. Partial Differential Equations (pdes) 12 Partial Differential Equations (pdes) 13 Complex Numbers And Functions 14 Complex Integration 15 Power Series, Taylor Series 16 Laurent Series. Residue Integration 17 Conformal Mapping 18 Complex Analysis And Potential Theory 19 Numerics In General 20 Numeric Linear Algebra 21 Numerics For Odes And Pdes 22 Unconstrauined Optimization. Linear Programming 23 Graphs. Combinatorial Optimization 24 Data Analysis. Probability Theory 25 Mathematical Statistics Chapter2: Second-order Linear Odes
2.1 Homogeneous Linear Odes Of Second Order 2.2 Homogeneous Linear Odes With Constant Coefficients 2.3 Differential Operators 2.4 Modeling Of Free Oscillators Of A Mass-spring System 2.5 Euler-cauchy Equations 2.6 Existence And Uniqueness Of Solutions. Wronskian 2.7 Nonhomogeneous Odes 2.8 Modeling: Forced Oscillations. Resonance 2.9 Modeling: Electric Circuits 2.10 Solution By Variation Of Parameters Chapter Questions Section: Chapter Questions
Problem 1RQ Problem 2RQ Problem 3RQ: By what methods can you get a general solution of a nonhomogeneous ODE from a general solution of a... Problem 4RQ Problem 5RQ Problem 6RQ Problem 7RQ: Find a general solution. Show the details of your calculation.
4y″ + 32y′ + 63y = 0
Problem 8RQ: Find a general solution. Show the details of your calculation.
y″ + y′ − 12y = 0
Problem 9RQ: Find a general solution. Show the details of your calculation.
y″ + 6y′ + 34y = 0
Problem 10RQ: Find a general solution. Show the details of your calculation.
y″ + 0.20y′ + 0.17y = 0
Problem 11RQ: Find a general solution. Show the details of your calculation.
(100D2 − 160D + 64I)y = 0
Problem 12RQ: Find a general solution. Show the details of your calculation.
(D2 + 4πD + 4π2I)y = 0
Problem 13RQ: Find a general solution. Show the details of your calculation.
(x2D2 + 2xD − 12I)y = 0
Problem 14RQ: Find a general solution. Show the details of your calculation.
(x2D2 + xD − 9I)y = 0
Problem 15RQ Problem 16RQ Problem 17RQ Problem 18RQ: Find a general solution. Show the details of your calculation.
yy″ = 2y′2
Problem 19RQ: Solve the problem, showing the details of your work. Sketch or graph the solution.
y″ + 16y =... Problem 20RQ: Solve the problem, showing the details of your work. Sketch or graph the solution.
y″ − 3y′ + 2y =... Problem 21RQ: Solve the problem, showing the details of your work. Sketch or graph the solution.
(x2D2 + xD − I)y... Problem 22RQ: Solve the problem, showing the details of your work. Sketch or graph the solution.
(x2D2 + 15xD +... Problem 23RQ: Find the steady-state current in the RLC-circuit in Fig. 71 when R = 2Ω (2000 Ω), L = 1 H, C = 4 ·... Problem 24RQ: Find a general solution of the homogeneous linear ODE corresponding to the ODE in Prob. 23.
25. Find... Problem 25RQ: Find the steady-state current in the RLC-circuit in Fig. 71 when R = 50 Ω, L = 30 H, C = 0.025 F, E... Problem 26RQ: Find the current in the RLC-circuit in Fig. 71 when R = 40 Ω, L = 0.4 H, C = 10−4 F, E = 220 sin... Problem 27RQ Problem 28RQ Problem 29RQ Problem 30RQ Problem 1RQ
Related questions
This is a practice question from my Differential Equations course.
How’d they get from the given equation to the answer? Textbook is very unclear; so I’m hoping for more detail and less skipping of steps…
Thank you for your assistance in understanding this.
Transcribed Image Text: ### Differential Equations in Oscillatory Systems
In this section, we explore the solution of the given initial value problem by expressing it as a sum of two oscillations, following the form presented in Equation (8).
Equation (8) is presented as:
\[ x(t) = C \cos(\omega_0 t - \alpha) + \frac{F_0/m}{\omega_0^2 - \omega^2} \cos \omega t, \tag{8} \]
where:
- \( x(t) \) represents the displacement as a function of time.
- \( C \) and \( \alpha \) are constants determined by initial conditions.
- \( \omega_0 \) is the natural angular frequency of the system.
- \( F_0 \) is the amplitude of the external driving force.
- \( m \) is the mass of the oscillating object.
- \( \omega \) is the angular frequency of the driving force.
The initial value problem, with given initial conditions, is formulated as:
\[ mx'' + kx = F_0 \cos \omega t, \]
with the conditions:
- \( \omega = \omega_0 \)
- \( x(0) = 0 \)
- \( x'(0) = v_0 \)
Here,
- \( x'' \) denotes the second derivative of \( x \) with respect to time \( t \), representing acceleration.
- \( k \) is the spring constant.
In solving this problem, the motion is characterized by two components: the natural oscillation of the system and the forced oscillation due to the external driving force. The complete solution is a superposition of these two oscillatory motions.
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Step 1: Introduction
VIEW
Step 2: Find complement solution
VIEW Step 3: Find perticular solution :
VIEW Step 4: Find Solution of IVP
VIEW
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 16 images