Express the periodic loading shown using Fourier's series expansion. F(t) F(t)= (1) Oct 25 +++ 0 2T

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Question is posted as well as hint to solve the problem. 

### Fourier Series

The Fourier Series is a way to represent a function as the sum of simple sine waves. It decomposes periodic functions into sums of simpler, sinusoidal components.

#### Formula Breakdown

1. **Angular Frequency:** 
   \[
   \Omega = \frac{2\pi}{T_n}
   \]

2. **Piecewise Function Definition:**
   \[
   F(t) = 
   \begin{cases} 
   F_0 \sin \frac{3\pi}{T_n} t, & 0 < t < \frac{2\pi}{3} \\
   0, & \frac{2\pi}{3} < t < T_n 
   \end{cases}
   \]

3. **Fourier Series Representation:**
   \[
   F(t) = \frac{a_0}{2} + \sum a_n \cos n\Omega t + \sum b_n \sin n\Omega t
   \]
   Or, equivalently:
   \[
   F(t) = \frac{a_0}{2} + \sum a_n \cos \frac{2\pi n}{T_n} t + \sum b_n \sin \frac{2\pi n}{T_n} t 
   \]

4. **Coefficient Definitions:**
   - \(a_0\)
     \[
     a_0 = \frac{2}{T_n} \int_0^{T_n} F(t) dt
     \]
   - \(a_n\)
     \[
     a_n = \frac{2}{T_n} \int_0^{T_n} F(t) \cos n \Omega t dt
     \]
   - \(b_n\)
     \[
     b_n = \frac{2}{T_n} \int_0^{T_n} F(t) \sin n \Omega t dt
     \]

5. **Example Expansion:**
   \[
   F(t) = \frac{6F_0}{\pi} \left( \frac{1}{5} \cos \frac{\pi t}{T_n} - \frac{1}{7} \cos \frac{3 \pi t}{T_n} + \frac{2}{35} \cos \frac{5 \pi t}{T_n} - \frac
Transcribed Image Text:### Fourier Series The Fourier Series is a way to represent a function as the sum of simple sine waves. It decomposes periodic functions into sums of simpler, sinusoidal components. #### Formula Breakdown 1. **Angular Frequency:** \[ \Omega = \frac{2\pi}{T_n} \] 2. **Piecewise Function Definition:** \[ F(t) = \begin{cases} F_0 \sin \frac{3\pi}{T_n} t, & 0 < t < \frac{2\pi}{3} \\ 0, & \frac{2\pi}{3} < t < T_n \end{cases} \] 3. **Fourier Series Representation:** \[ F(t) = \frac{a_0}{2} + \sum a_n \cos n\Omega t + \sum b_n \sin n\Omega t \] Or, equivalently: \[ F(t) = \frac{a_0}{2} + \sum a_n \cos \frac{2\pi n}{T_n} t + \sum b_n \sin \frac{2\pi n}{T_n} t \] 4. **Coefficient Definitions:** - \(a_0\) \[ a_0 = \frac{2}{T_n} \int_0^{T_n} F(t) dt \] - \(a_n\) \[ a_n = \frac{2}{T_n} \int_0^{T_n} F(t) \cos n \Omega t dt \] - \(b_n\) \[ b_n = \frac{2}{T_n} \int_0^{T_n} F(t) \sin n \Omega t dt \] 5. **Example Expansion:** \[ F(t) = \frac{6F_0}{\pi} \left( \frac{1}{5} \cos \frac{\pi t}{T_n} - \frac{1}{7} \cos \frac{3 \pi t}{T_n} + \frac{2}{35} \cos \frac{5 \pi t}{T_n} - \frac
### Fourier Series Expansion of a Periodic Loading Function

**Objective:** Express the periodic loading function shown using Fourier's series expansion.

#### Mathematical Definition

The periodic loading function \( F(t) \) is defined as follows:

\[
F(t) = 
\begin{cases} 
F_0 \sin \left( \frac{3\pi}{T_n} t \right) & 0 < t < \frac{2T_n}{3} \\
0 & \frac{2T_n}{3} < t < T_n 
\end{cases}
\]

Where:
- \( F_0 \) is the amplitude.
- \( T_n \) is the period.

#### Graphical Representation

The function \( F(t) \) is graphically represented in a diagram with respect to time \( t \), showing the periodic nature of the function within one period \( T_n \). Key features of the graph include:
- The function \( F(t) \) exhibits a sinusoidal waveform from \( t = 0 \) to \( t = \frac{2T_n}{3} \).
- From \( t = \frac{2T_n}{3} \) to \( t = T_n \), the function remains at zero value \( F(t) = 0 \).

#### Detailed Breakdown of the Graph

1. **Interval \( 0 < t < \frac{2T_n}{3} \):**
   - The function \( F(t) \) follows a sinusoidal path, represented by \( F_0 \sin \left( \frac{3\pi}{T_n} t \right) \).
   - The sine wave rises to its peak and then descends back to zero within this interval.

2. **Interval \( \frac{2T_n}{3} < t < T_n \):**
   - The function \( F(t) \) is zero in this interval, indicating no loading.

The periodic nature of the function implies that this pattern repeats for subsequent periods \( T_n \), making it suitable for expansion using Fourier series techniques.

### Fourier Series Expansion

To find the Fourier series expansion of \( F(t) \), you would typically calculate the coefficients \( a_n \) and \( b_n \) using integrals over one period of the function. The periodic function can then be expressed as an infinite sum of sines and cosines:

\[
F(t
Transcribed Image Text:### Fourier Series Expansion of a Periodic Loading Function **Objective:** Express the periodic loading function shown using Fourier's series expansion. #### Mathematical Definition The periodic loading function \( F(t) \) is defined as follows: \[ F(t) = \begin{cases} F_0 \sin \left( \frac{3\pi}{T_n} t \right) & 0 < t < \frac{2T_n}{3} \\ 0 & \frac{2T_n}{3} < t < T_n \end{cases} \] Where: - \( F_0 \) is the amplitude. - \( T_n \) is the period. #### Graphical Representation The function \( F(t) \) is graphically represented in a diagram with respect to time \( t \), showing the periodic nature of the function within one period \( T_n \). Key features of the graph include: - The function \( F(t) \) exhibits a sinusoidal waveform from \( t = 0 \) to \( t = \frac{2T_n}{3} \). - From \( t = \frac{2T_n}{3} \) to \( t = T_n \), the function remains at zero value \( F(t) = 0 \). #### Detailed Breakdown of the Graph 1. **Interval \( 0 < t < \frac{2T_n}{3} \):** - The function \( F(t) \) follows a sinusoidal path, represented by \( F_0 \sin \left( \frac{3\pi}{T_n} t \right) \). - The sine wave rises to its peak and then descends back to zero within this interval. 2. **Interval \( \frac{2T_n}{3} < t < T_n \):** - The function \( F(t) \) is zero in this interval, indicating no loading. The periodic nature of the function implies that this pattern repeats for subsequent periods \( T_n \), making it suitable for expansion using Fourier series techniques. ### Fourier Series Expansion To find the Fourier series expansion of \( F(t) \), you would typically calculate the coefficients \( a_n \) and \( b_n \) using integrals over one period of the function. The periodic function can then be expressed as an infinite sum of sines and cosines: \[ F(t
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,