Express the matrix and its inverse as products of elementary matrices A =08 6 0 0 1 The matrix A can be written as: BEE GEE ofi 0 4TI o OTI 0 0 080 ofi o -4 0 OTI O 0 6080 00 1 ofi o oTI o OTI O 0 0100 60 -8 0 o[i 0 4T1 01001 0 0I0 0 ofi o o 0100 [401o o 1lo o 6080 0 -8 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

please do this correct

Express the matrix and its inverse as products of elementary matrices
10-4
A =0 8 6
00
The matrix A can be written as:
ofi 0 4T1 0 OTI0 0
00 8 0
0 0 1
ofi 0 -41 o OI 0 0
01 60 8 0
01 00
00 1
0 -6 1
0 0
001
00 1
0 O1 0 0T100
01001 60 -8 0
-1014 0 io 0
o[i 0 4 100
01001 -6 0 80
0 0 1
o[i 0 0 10 01
I00
0 0 1
0 0 1
010
0160-8 0
Transcribed Image Text:Express the matrix and its inverse as products of elementary matrices 10-4 A =0 8 6 00 The matrix A can be written as: ofi 0 4T1 0 OTI0 0 00 8 0 0 0 1 ofi 0 -41 o OI 0 0 01 60 8 0 01 00 00 1 0 -6 1 0 0 001 00 1 0 O1 0 0T100 01001 60 -8 0 -1014 0 io 0 o[i 0 4 100 01001 -6 0 80 0 0 1 o[i 0 0 10 01 I00 0 0 1 0 0 1 010 0160-8 0
The matrix A can be written as:
10 00 o 104
0 001 -6 010
00 1
A
0 0 1
1
10 0 1 001 00
08001 0010
0 01
100
100
104
0800 16
010
0 01
001
0 0 1
10
10 01O
01001O
0610 01
0 0
10 0TI O o
000 1
0 010 0
I00
A
010
Transcribed Image Text:The matrix A can be written as: 10 00 o 104 0 001 -6 010 00 1 A 0 0 1 1 10 0 1 001 00 08001 0010 0 01 100 100 104 0800 16 010 0 01 001 0 0 1 10 10 01O 01001O 0610 01 0 0 10 0TI O o 000 1 0 010 0 I00 A 010
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,