Express in simplest radical form. (125x6)

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Question
## Algebraic Simplification

### Express in Simplest Radical Form

Given expression:
\[ \left(125x^6\right)^{\frac{5}{3}} \]

To solve this, express each component inside the parentheses in its simplest radical form. 

First, break down the expression inside the parentheses:

\[ 125 = 5^3 \]
\[ x^6 = \left(x^2\right)^3 \]

So,

\[ \left(125x^6\right)^{\frac{5}{3}} = \left(5^3 \cdot \left(x^2\right)^3\right)^{\frac{5}{3}} \]

Apply the property of exponents \(\left(a \cdot b\right)^m = a^m \cdot b^m\):

\[ = \left(5^3\right)^{\frac{5}{3}} \cdot \left(\left(x^2\right)^3\right)^{\frac{5}{3}} \]

Simplify each term:

\[ \left(5^3\right)^{\frac{5}{3}} = 5^{3 \cdot \frac{5}{3}} = 5^5 \]
\[ \left(\left(x^2\right)^3\right)^{\frac{5}{3}} = \left(x^2\right)^{3 \cdot \frac{5}{3}} = x^{2 \cdot 5} = x^{10} \]

Combine the terms:

\[ = 5^5 \cdot x^{10} \]

Therefore, the simplest radical form is:

\[ 3125x^{10} \]

So we have:
\[ \left(125x^6\right)^{\frac{5}{3}} = 3125x^{10} \]
Transcribed Image Text:## Algebraic Simplification ### Express in Simplest Radical Form Given expression: \[ \left(125x^6\right)^{\frac{5}{3}} \] To solve this, express each component inside the parentheses in its simplest radical form. First, break down the expression inside the parentheses: \[ 125 = 5^3 \] \[ x^6 = \left(x^2\right)^3 \] So, \[ \left(125x^6\right)^{\frac{5}{3}} = \left(5^3 \cdot \left(x^2\right)^3\right)^{\frac{5}{3}} \] Apply the property of exponents \(\left(a \cdot b\right)^m = a^m \cdot b^m\): \[ = \left(5^3\right)^{\frac{5}{3}} \cdot \left(\left(x^2\right)^3\right)^{\frac{5}{3}} \] Simplify each term: \[ \left(5^3\right)^{\frac{5}{3}} = 5^{3 \cdot \frac{5}{3}} = 5^5 \] \[ \left(\left(x^2\right)^3\right)^{\frac{5}{3}} = \left(x^2\right)^{3 \cdot \frac{5}{3}} = x^{2 \cdot 5} = x^{10} \] Combine the terms: \[ = 5^5 \cdot x^{10} \] Therefore, the simplest radical form is: \[ 3125x^{10} \] So we have: \[ \left(125x^6\right)^{\frac{5}{3}} = 3125x^{10} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education