the free energy for a reaction can be related to the equilibrium constant through the formula below. K = e (-ΔG° / RT) Therefore if Kc for a reaction is known, Go can be determined, or vice versa. Furthermore, if you have the value for Go at two different temperatures, you can calculate H and S through the familiar equation for Gibbs energy below, since you have two unknowns but also two equations. G = H – T S In this lab you will be studying the solubility of borax (Na2B4O5(OH)4*8H2O), a slightly soluble sodium salt, at two different temperatures. When solid borax is added to water, the equilibrium below is established. Na2B4O5(OH)4*8H2O (s) 2 Na+ (aq) + B4O5(OH)42- (aq) + 8 H2O(l) If you measure the concentrations for those substances that show up in the reaction quotient, then the Kc for the reaction at that temperature can be calculated. In this lab, the concentration of borate ion (B4O5(OH)42-) in solution will be measured by titration with standard hydrochloric acid according to the equation below. B4O5(OH)42- (aq) + 2 HCl (aq) + 3 H2O (l)  4 H3BO3 (aq) + 2 Cl- (aq) The concentrations of the other substances that appear in the reaction quotient can be calculated from the borate concentration using stoichiometry. Two Kc values with temperature Room temperature: 296 K and Kc: 0.00332 M Ice temperature: 277 K and Kc: 0.0000173 M Calculations for the two values for ΔGo: [In this section, you present the calculations that are pertinent for determining your experimental values for the Gibbs energy at each temperature. Include units!]

Chemistry for Engineering Students
4th Edition
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Lawrence S. Brown, Tom Holme
Chapter10: Entropy And The Second Law Of Thermodynamics
Section: Chapter Questions
Problem 10.80PAE
icon
Related questions
Question

 the free energy for a reaction can be related to the equilibrium
constant through the formula below.
K = e (-ΔG° / RT)
Therefore if Kc for a reaction is known, Go can be determined, or vice versa. Furthermore, if
you have the value for Go at two different temperatures, you can calculate H and S through
the familiar equation for Gibbs energy below, since you have two unknowns but also two
equations.
G = H – T S
In this lab you will be studying the solubility of borax (Na2B4O5(OH)4*8H2O), a slightly soluble
sodium salt, at two different temperatures. When solid borax is added to water, the
equilibrium below is established.
Na2B4O5(OH)4*8H2O (s) 2 Na+ (aq) + B4O5(OH)42- (aq) + 8 H2O(l)
If you measure the concentrations for those substances that show up in the reaction quotient,
then the Kc for the reaction at that temperature can be calculated. In this lab, the
concentration of borate ion (B4O5(OH)42-) in solution will be measured by titration with standard
hydrochloric acid according to the equation below.
B4O5(OH)42- (aq) + 2 HCl (aq) + 3 H2O (l)  4 H3BO3 (aq) + 2 Cl- (aq)
The concentrations of the other substances that appear in the reaction quotient can be
calculated from the borate concentration using stoichiometry. 

Two Kc values with temperature 

Room temperature: 296 K and Kc: 0.00332 M 

Ice temperature: 277 K and Kc: 0.0000173 M 

Calculations for the two values for ΔGo

[In this section, you present the calculations that are pertinent for determining your experimental values for the Gibbs energy at each temperature.  Include units!]

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Explain the chemical principles that were involved in deciding to manipulate the numbers the way you did.  You only need to provide the explanation for the room temperature calculations

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning