Expand then reduce the proposition. Simplify ¬(¬q→(¬p∧¬q)) to ¬q∧p Select a law from below to apply to: ¬(¬q→(¬p∧¬q))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Expand then reduce the proposition.

Simplify ¬(¬q→(¬p∧¬q)) to ¬q∧p

Select a law from below to apply to: ¬(¬q→(¬p∧¬q))
 
 
### Logical Laws

This table presents important logical laws used in mathematical logic and computer science. 

#### Distributive Laws
- \((a \land b) \lor (a \land c) \equiv a \land (b \lor c)\)
- \((a \lor b) \land (a \lor c) \equiv a \lor (b \land c)\)

#### Commutative Laws
- \(a \lor b \equiv b \lor a\)
- \(a \land b \equiv b \land a\)

#### De Morgan's Laws
- \(\lnot (a \lor b) \equiv \lnot a \land \lnot b\)
- \(\lnot (a \land b) \equiv \lnot a \lor \lnot b\)

#### Conditional Laws
- \(a \rightarrow b \equiv \lnot a \lor b\)
- \(a \leftrightarrow b \equiv (a \rightarrow b) \land (b \rightarrow a)\)

#### Complement Laws
- \(a \lor \lnot a \equiv \text{True}\)
- \(a \land \lnot a \equiv \text{False}\)
- \(\lnot \text{True} \equiv \text{False}\)
- \(\lnot \text{False} \equiv \text{True}\)

#### Identity Laws
- \(a \lor \text{False} \equiv a\)
- \(a \land \text{True} \equiv a\)

#### Double Negation Law
- \(\lnot \lnot a \equiv a\)

These laws are fundamental in simplifying logical expressions and proving logical equivalences.
Transcribed Image Text:### Logical Laws This table presents important logical laws used in mathematical logic and computer science. #### Distributive Laws - \((a \land b) \lor (a \land c) \equiv a \land (b \lor c)\) - \((a \lor b) \land (a \lor c) \equiv a \lor (b \land c)\) #### Commutative Laws - \(a \lor b \equiv b \lor a\) - \(a \land b \equiv b \land a\) #### De Morgan's Laws - \(\lnot (a \lor b) \equiv \lnot a \land \lnot b\) - \(\lnot (a \land b) \equiv \lnot a \lor \lnot b\) #### Conditional Laws - \(a \rightarrow b \equiv \lnot a \lor b\) - \(a \leftrightarrow b \equiv (a \rightarrow b) \land (b \rightarrow a)\) #### Complement Laws - \(a \lor \lnot a \equiv \text{True}\) - \(a \land \lnot a \equiv \text{False}\) - \(\lnot \text{True} \equiv \text{False}\) - \(\lnot \text{False} \equiv \text{True}\) #### Identity Laws - \(a \lor \text{False} \equiv a\) - \(a \land \text{True} \equiv a\) #### Double Negation Law - \(\lnot \lnot a \equiv a\) These laws are fundamental in simplifying logical expressions and proving logical equivalences.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,