Exercises 9-12 display a matrix A and an echelon form of A. Find bases for Col A and Nul A, and then state the dimensions of these subspaces. 9. A 1 -3 -3 2-4 9 -1 5 4 -3 7 2-6 -4 12 2 N 1-3 2-4 05-7 0 0 0 00 5 00 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Exercises 9–12** display a matrix \( A \) and an echelon form of \( A \). Find bases for \( \text{Col} A \) and \( \text{Nul} A \), and then state the dimensions of these subspaces.

**9.**
\[ 
A = \begin{bmatrix}
1 & -3 & 2 & -4 \\
-3 & 9 & -1 & 5 \\
2 & -6 & 4 & -3 \\
-4 & 12 & 2 & 7
\end{bmatrix} 
\quad \sim \quad 
\begin{bmatrix}
1 & -3 & 2 & -4 \\
0 & 0 & 5 & -7 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 
\end{bmatrix}
\]

**10.**
\[ 
A = \begin{bmatrix}
1 & -2 & 9 & 5 & 4 \\
-1 & -1 & 6 & 5 & -3 \\
2 & 0 & -6 & -1 & 2 \\
4 & 1 & 9 & 1 & -9
\end{bmatrix} 
\quad \sim \quad 
\begin{bmatrix}
1 & -2 & 9 & 5 & 4 \\
0 & 1 & -3 & 0 & -7 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

**Details:**

- For each matrix \( A \) provided, the echelon form is computed and displayed alongside the original matrix.
- Follow the steps to convert each original matrix \( A \) to its echelon form.
- Identify the pivot columns in the echelon form; these columns form the basis for \( \text{Col} A \).
- Solve the homogeneous system \( A\mathbf{x} = 0 \) to find the basis for \( \text{Nul} A \).

**Column Space (Col A):**
The basis for the column space consists of the pivot columns of the original matrix \( A \).

**Null Space (Nul A):**
The basis for the null
Transcribed Image Text:**Exercises 9–12** display a matrix \( A \) and an echelon form of \( A \). Find bases for \( \text{Col} A \) and \( \text{Nul} A \), and then state the dimensions of these subspaces. **9.** \[ A = \begin{bmatrix} 1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7 \end{bmatrix} \quad \sim \quad \begin{bmatrix} 1 & -3 & 2 & -4 \\ 0 & 0 & 5 & -7 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \] **10.** \[ A = \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ -1 & -1 & 6 & 5 & -3 \\ 2 & 0 & -6 & -1 & 2 \\ 4 & 1 & 9 & 1 & -9 \end{bmatrix} \quad \sim \quad \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \] **Details:** - For each matrix \( A \) provided, the echelon form is computed and displayed alongside the original matrix. - Follow the steps to convert each original matrix \( A \) to its echelon form. - Identify the pivot columns in the echelon form; these columns form the basis for \( \text{Col} A \). - Solve the homogeneous system \( A\mathbf{x} = 0 \) to find the basis for \( \text{Nul} A \). **Column Space (Col A):** The basis for the column space consists of the pivot columns of the original matrix \( A \). **Null Space (Nul A):** The basis for the null
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,