Exercise III.2. Graph the following sets S in R² and determine which are conver: (i) B (ii) B:= • { ( ₁ ) : 2²³² + √² ≤ ² {(); ²² +*² <1} [la] ≤1] ^ [<1]} (iii) : (iv) BUC where CC bdry(B) (v) Bo ~{(*): [|~| ≤1] ^ [y] =1]} (vi) {{"): [2² + y² <1] ^ [y ≥0]}

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter3: Functions And Graphs
Section3.3: Lines
Problem 10E
icon
Related questions
Question

I just need to know which ones are convex, no need to graph. Thank you!

**Exercise III.2.** Graph the following sets \( S \) in \( \mathbb{R}^2 \) and determine which are convex:

(i) \[ \textbf{B} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 < 1 \right\} \]

(ii) \[ \bar{\textbf{B}} := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 \leq 1 \right\} \]

(iii) \[ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : |x| \leq 1 \wedge |y| < 1 \right\} \]

(iv) \[ \textbf{B} \cup \textbf{C} \text{ where } \textbf{C} \subseteq \text{bdry}(\textbf{B}) \]

(v) \[ \textbf{B}_\infty \cup \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : |x| \leq 1 \wedge |y| = 1 \right\} \]

(vi) \[ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 < 1 \wedge y \geq 0 \right\} \]

Note: 
- \(\textbf{B}\) and \(\bar{\textbf{B}}\) represent the open and closed unit disks in the plane, respectively.
- \(\textbf{B}_\infty\) denotes the unit ball in the \(L^\infty\) norm, typically a square of side 2 centered at the origin with sides parallel to the axes.
- \(\text{bdry}(\textbf{B})\) refers to the boundary of set \(\textbf{B}\).
Transcribed Image Text:**Exercise III.2.** Graph the following sets \( S \) in \( \mathbb{R}^2 \) and determine which are convex: (i) \[ \textbf{B} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 < 1 \right\} \] (ii) \[ \bar{\textbf{B}} := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 \leq 1 \right\} \] (iii) \[ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : |x| \leq 1 \wedge |y| < 1 \right\} \] (iv) \[ \textbf{B} \cup \textbf{C} \text{ where } \textbf{C} \subseteq \text{bdry}(\textbf{B}) \] (v) \[ \textbf{B}_\infty \cup \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : |x| \leq 1 \wedge |y| = 1 \right\} \] (vi) \[ \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 < 1 \wedge y \geq 0 \right\} \] Note: - \(\textbf{B}\) and \(\bar{\textbf{B}}\) represent the open and closed unit disks in the plane, respectively. - \(\textbf{B}_\infty\) denotes the unit ball in the \(L^\infty\) norm, typically a square of side 2 centered at the origin with sides parallel to the axes. - \(\text{bdry}(\textbf{B})\) refers to the boundary of set \(\textbf{B}\).
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage