Exercise 9.2.7 Determine whether each of the following sets of matrices is linearly independent. If it is linearly dependent, write one matrix as a linear combination of the other matrices in the set. (a) {[13] [3 2 -2 -3 4 0 2 1 (b) { [ 8 ] [ 8 ] [ ¦ 8 ] [ 8 ])} 0 1 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Exercise 9.2.7** Determine whether each of the following sets of matrices is linearly independent. If it is linearly dependent, write one matrix as a linear combination of the other matrices in the set.

(a) 

\[
\left\{\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -7 & 2 \\ -2 & -3 \end{bmatrix}, \begin{bmatrix} 4 & 0 \\ 1 & 2 \end{bmatrix}\right\}
\]

(b)

\[
\left\{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}\right\}
\]
Transcribed Image Text:**Exercise 9.2.7** Determine whether each of the following sets of matrices is linearly independent. If it is linearly dependent, write one matrix as a linear combination of the other matrices in the set. (a) \[ \left\{\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -7 & 2 \\ -2 & -3 \end{bmatrix}, \begin{bmatrix} 4 & 0 \\ 1 & 2 \end{bmatrix}\right\} \] (b) \[ \left\{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}\right\} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 34 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,