Exercise 8.2.8. Let q: CX → RX be the map o(z) = |z|² where |z| is the modulus of z. (1) Show q is a homomorphism. (2) Compute ker q and q(CX). (3) Show CX/ker q = q (CX).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Exercise 8.2.8.**

Let \( \varphi : \mathbb{C}^\times \rightarrow \mathbb{R}^\times \) be the map \( \varphi(z) = |z|^2 \) where \( |z| \) is the modulus of \( z \).

1. Show \( \varphi \) is a homomorphism.

2. Compute \( \ker \varphi \) and \( \varphi(\mathbb{C}^\times) \).

3. Show \( \mathbb{C}^\times / \ker \varphi \cong \varphi(\mathbb{C}^\times) \).
Transcribed Image Text:**Exercise 8.2.8.** Let \( \varphi : \mathbb{C}^\times \rightarrow \mathbb{R}^\times \) be the map \( \varphi(z) = |z|^2 \) where \( |z| \) is the modulus of \( z \). 1. Show \( \varphi \) is a homomorphism. 2. Compute \( \ker \varphi \) and \( \varphi(\mathbb{C}^\times) \). 3. Show \( \mathbb{C}^\times / \ker \varphi \cong \varphi(\mathbb{C}^\times) \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,