Exercise 7.5.13 Specify whether each statement is true or false. If true, provide a proof. If false, provide a counterexample. (a) If A is a 3 x 3-matrix with determinant zero, then one column must be a multiple of some other column. (b) If any two columns of a square matrix are equal, then the determinant of the matrix equals zero. (c) For two nxn-matrices A and B, det(A + B) = det(A)+det(B).
Exercise 7.5.13 Specify whether each statement is true or false. If true, provide a proof. If false, provide a counterexample. (a) If A is a 3 x 3-matrix with determinant zero, then one column must be a multiple of some other column. (b) If any two columns of a square matrix are equal, then the determinant of the matrix equals zero. (c) For two nxn-matrices A and B, det(A + B) = det(A)+det(B).
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
Can you please solve a, b & c ?
![**Exercise 7.5.13**
Specify whether each statement is true or false. If true, provide a proof. If false, provide a counterexample.
(a) If \( A \) is a \( 3 \times 3 \)-matrix with determinant zero, then one column must be a multiple of some other column.
(b) If any two columns of a square matrix are equal, then the determinant of the matrix equals zero.
(c) For two \( n \times n \)-matrices \( A \) and \( B \), \( \text{det}(A + B) = \text{det}(A) + \text{det}(B) \).
(d) For an \( n \times n \)-matrix \( A \), \( \text{det}(3A) = 3 \text{det}(A) \).
(e) If \( A^{-1} \) exists, then \( \text{det}(A^{-1}) = \text{det}(A)^{-1} \).
(f) If \( B \) is obtained by multiplying a single row of \( A \) by 4, then \( \text{det}(B) = 4 \text{det}(A) \).
(g) For an \( n \times n \)-matrix \( A \), we have \( \text{det}(-A) = (-1)^n \text{det}(A) \).
(h) If \( A \) is a real \( n \times n \)-matrix, then \( \text{det}(A^T A) \geq 0 \).
(i) If \( A^k = 0 \) for some positive integer \( k \), then \( \text{det}(A) = 0 \).
(j) If \( Ax = 0 \) for some \( x \neq 0 \), then \( \text{det}(A) = 0 \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F98a85d3f-1221-4cd9-b5c2-c225eed9a46f%2Fc952cf7e-fcbc-4764-8408-69baf0042fe0%2Flrw76h_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Exercise 7.5.13**
Specify whether each statement is true or false. If true, provide a proof. If false, provide a counterexample.
(a) If \( A \) is a \( 3 \times 3 \)-matrix with determinant zero, then one column must be a multiple of some other column.
(b) If any two columns of a square matrix are equal, then the determinant of the matrix equals zero.
(c) For two \( n \times n \)-matrices \( A \) and \( B \), \( \text{det}(A + B) = \text{det}(A) + \text{det}(B) \).
(d) For an \( n \times n \)-matrix \( A \), \( \text{det}(3A) = 3 \text{det}(A) \).
(e) If \( A^{-1} \) exists, then \( \text{det}(A^{-1}) = \text{det}(A)^{-1} \).
(f) If \( B \) is obtained by multiplying a single row of \( A \) by 4, then \( \text{det}(B) = 4 \text{det}(A) \).
(g) For an \( n \times n \)-matrix \( A \), we have \( \text{det}(-A) = (-1)^n \text{det}(A) \).
(h) If \( A \) is a real \( n \times n \)-matrix, then \( \text{det}(A^T A) \geq 0 \).
(i) If \( A^k = 0 \) for some positive integer \( k \), then \( \text{det}(A) = 0 \).
(j) If \( Ax = 0 \) for some \( x \neq 0 \), then \( \text{det}(A) = 0 \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education