Exercise 6: Let S be a monempty subset of R that is bounded below. Prove that inf S= - sup { - SISES}.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
6
Exercise 6: | Let S be a monempty subset of 1R that is bounded
below • Pove that if S = - sup { - 5:5€5}.
Transcribed Image Text:Exercise 6: | Let S be a monempty subset of 1R that is bounded below • Pove that if S = - sup { - 5:5€5}.
Expert Solution
Step 1: ''Introduction to the solution''

Let S be a non-empty  subset  of straight real numbers  that  is  bounded below.

Then, Infimum of S exists and  suppose Infopen parentheses S close parenthesesequals m.

So, by the definition  of Infimum , we  obtain (1) m less or equal than s comma space for all s element of S.......... left parenthesis 1 right parenthesis

                                                                and   open parentheses 2 close parentheses for all epsilon greater than 0 comma spacethere exists  an element y element of S spacesuch  that y less than left parenthesis m plus epsilon right parenthesis............ left parenthesis 2 right parenthesis

To show I n f left parenthesis S right parenthesis equals negative S u p left curly bracket negative s colon space s element of S right curly bracket, it  is  enough  to show  that S u p left parenthesis negative S right parenthesis equals negative I n f left parenthesis S right parenthesis equals negative m.

where S u p left parenthesis negative S right parenthesis equals left curly bracket negative s colon space s element of S right curly bracket


steps

Step by step

Solved in 3 steps with 25 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,