Exercise 5.4.8. Given (, m,p E Z and a = mod(,n),b = mod(m, n), and c= mod(p,n). Show the following equivalences using Proposition 54.4. %3D (a) mod( + m) + p,n) = (a &b) @c ("Hint) (b) mod(+ (m +p),n) = a (b@c). (c) mod(l-m) -p.n) = (a ob) oc. (d) mod(( -m) + p, n) = (a ©b)@c. %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Please solve only d part within 10 minutes then I will give you double thumps up

Proposition 5.4.4. Given l, m E Z.
(a) mod(l+m,n) = mod(l, n) mod(m,n),
%3D
(b) mod(l - m,n) = mod(l, n) © mod(m, n).
Exercise 5.4.8. Given (, m,p E Z and a = mod(,n), b= mod(m,n), and
c= mod(p,n). Show the following equivalences using Proposition 5.4.4.
%3D
!!
(a) mod(l +m) + p, n) = (a ☺b)ec. ("Hint*)
%3D
(b) mod(+ (m +p),n) = a (b@c).
(c) mod( -m) -p,n) = (a © b) oc.
(d) mod(l-m) + p.n) = (a ©b)@c.
(e) mod( + m) - ,n) = (a @ b) oc.
Please do part a and d please show step by
step and the hint for part a says that you
will need to use Proposition 5.4.4 twice.
Transcribed Image Text:Proposition 5.4.4. Given l, m E Z. (a) mod(l+m,n) = mod(l, n) mod(m,n), %3D (b) mod(l - m,n) = mod(l, n) © mod(m, n). Exercise 5.4.8. Given (, m,p E Z and a = mod(,n), b= mod(m,n), and c= mod(p,n). Show the following equivalences using Proposition 5.4.4. %3D !! (a) mod(l +m) + p, n) = (a ☺b)ec. ("Hint*) %3D (b) mod(+ (m +p),n) = a (b@c). (c) mod( -m) -p,n) = (a © b) oc. (d) mod(l-m) + p.n) = (a ©b)@c. (e) mod( + m) - ,n) = (a @ b) oc. Please do part a and d please show step by step and the hint for part a says that you will need to use Proposition 5.4.4 twice.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,