EXERCISE 2.2 Derive the expression of the Bezier curve for the four points Po = ( = (0, 0, 0), P₁ = (1, 0, 0), P₂ = (2, 1, 0), and P3 = (3, 0, 1). Derive the normal vector K(t) expression
EXERCISE 2.2 Derive the expression of the Bezier curve for the four points Po = ( = (0, 0, 0), P₁ = (1, 0, 0), P₂ = (2, 1, 0), and P3 = (3, 0, 1). Derive the normal vector K(t) expression
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![**Exercise 2.2**
**Objective:**
Derive the expression of the Bézier curve for the four points \( P_0 = (0, 0, 0) \), \( P_1 = (1, 0, 0) \), \( P_2 = (2, 1, 0) \), and \( P_3 = (3, 0, 1) \).
**Tasks:**
1. Derive the normal vector \( \mathbf{K}(t) \) expression of the parametric curve.
2. Calculate \( \mathbf{K}(0) \), \( \mathbf{K}(0.5) \), and \( \mathbf{K}(1) \).
3. Establish the osculating plane of the curve and find its equations for \( t = 0 \), \( t = 0.5 \), and \( t = 1 \).
### Steps:
1. **Derive the Expression of the Bézier Curve:**
- Use the given control points to formulate the Bézier curve equation.
2. **Derive the Normal Vector \( \mathbf{K}(t) \):**
- Differentiate the parametric equation of the Bézier curve to find the tangent vector.
- Find the normal vector \( \mathbf{K}(t) \).
3. **Calculate Specific Normal Vectors:**
- Evaluate \( \mathbf{K}(t) \) at \( t = 0 \), \( t = 0.5 \), and \( t = 1 \).
4. **Establish the Osculating Plane:**
- Determine the osculating plane at the specified \( t \) values.
- Formulate the equations for these planes.
### Detailed Walkthrough:
Given Points:
- \( P_0 = (0, 0, 0) \)
- \( P_1 = (1, 0, 0) \)
- \( P_2 = (2, 1, 0) \)
- \( P_3 = (3, 0, 1) \)
Formulate the Bézier curve \( \mathbf{P}(t) \) for \( 0 \leq t \leq 1 \):
\[ \mathbf{P}(t) = (1-t)^3P_0 + 3(1-t)^2tP](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F780f9839-f737-4aba-91a2-6210989911b1%2Fe33442e7-02e1-4866-96ff-c44d2164b32f%2Fxnmxmoi_processed.png&w=3840&q=75)
Transcribed Image Text:**Exercise 2.2**
**Objective:**
Derive the expression of the Bézier curve for the four points \( P_0 = (0, 0, 0) \), \( P_1 = (1, 0, 0) \), \( P_2 = (2, 1, 0) \), and \( P_3 = (3, 0, 1) \).
**Tasks:**
1. Derive the normal vector \( \mathbf{K}(t) \) expression of the parametric curve.
2. Calculate \( \mathbf{K}(0) \), \( \mathbf{K}(0.5) \), and \( \mathbf{K}(1) \).
3. Establish the osculating plane of the curve and find its equations for \( t = 0 \), \( t = 0.5 \), and \( t = 1 \).
### Steps:
1. **Derive the Expression of the Bézier Curve:**
- Use the given control points to formulate the Bézier curve equation.
2. **Derive the Normal Vector \( \mathbf{K}(t) \):**
- Differentiate the parametric equation of the Bézier curve to find the tangent vector.
- Find the normal vector \( \mathbf{K}(t) \).
3. **Calculate Specific Normal Vectors:**
- Evaluate \( \mathbf{K}(t) \) at \( t = 0 \), \( t = 0.5 \), and \( t = 1 \).
4. **Establish the Osculating Plane:**
- Determine the osculating plane at the specified \( t \) values.
- Formulate the equations for these planes.
### Detailed Walkthrough:
Given Points:
- \( P_0 = (0, 0, 0) \)
- \( P_1 = (1, 0, 0) \)
- \( P_2 = (2, 1, 0) \)
- \( P_3 = (3, 0, 1) \)
Formulate the Bézier curve \( \mathbf{P}(t) \) for \( 0 \leq t \leq 1 \):
\[ \mathbf{P}(t) = (1-t)^3P_0 + 3(1-t)^2tP
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)