Exercise 2. Let f: X→Y be a map between the topological spaces X and Y. a) Let V V(x) be a neighborhood of x E X. If the restriction fVz: V₂ →Y is continuous at x, show that f: XY is continuous at x.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Exercise 2
that J is automatically continuous? true prove it, II false give an examplej
Exercise 2. Let f: X→Y be a map between the topological spaces X and Y.
a) Let V
V(x) be a neighborhood of x E X. If the restriction f Va Va →Y is continuous at
x, show that f: XY is continuous at x.
b) Accu
Fuengigo 2
Transcribed Image Text:that J is automatically continuous? true prove it, II false give an examplej Exercise 2. Let f: X→Y be a map between the topological spaces X and Y. a) Let V V(x) be a neighborhood of x E X. If the restriction f Va Va →Y is continuous at x, show that f: XY is continuous at x. b) Accu Fuengigo 2
Expert Solution
Step 1

assume that for each xX, there is a neighborhood Vx of x

s.tsuch that f|Vx is continuous at x

Claim:f:X-Y  is conitnuous at x

Let x be any point in X. Let V be any open set in Y which contains f(x).

By assumption, there is a neighborhood W of x such that f|W is continuous

Since (f|W)-1(V) is an open set in W, there is an open set Vx in X such that

(f|W)-1(V)=VxU

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,