Exercise 2: A simple beam of span length 3.2 m carries a uniform load of intensity 48 kN/m. The cross section of the beam is a hollow box with wood flanges and steel side plates, as shown in the figure. The wood flanges are 75 mm by 100 mm in cross section, and the steel plates are 300 mm deep. What is the required thickness t of the steel plates if the allowable stresses are 120 MPa for the steel and 6.5 MPa for the wood? (Assume that the moduli of elasticity for the steel and wood are 210 GPa and 10 GPa, respectively, and disregard the weight of the beam.) 75 mm 75 mm 100 mm 300 mm

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
2:56
←
MDB exercise 2.docx
Exercise 2:
75 mm
A simple beam of span length 3.2 m carries a uniform load of intensity 48 kN/m. The
cross section of the beam is a hollow box with wood flanges and steel side plates, as
shown in the figure. The wood flanges are 75 mm by 100 mm in cross section, and the
steel plates are 300 mm deep. What is the required thickness t of the steel plates if the
allowable stresses are 120 MPa for the steel and 6.5 MPa for the wood? (Assume that the
moduli of elasticity for the steel and wood are 210 GPa and 10 GPa, respectively, and
disregard the weight of the beam.)
+
75 mm
+
с
TH
100 mm
4G+
Q4 34% +
300 mm
W
:
Transcribed Image Text:2:56 ← MDB exercise 2.docx Exercise 2: 75 mm A simple beam of span length 3.2 m carries a uniform load of intensity 48 kN/m. The cross section of the beam is a hollow box with wood flanges and steel side plates, as shown in the figure. The wood flanges are 75 mm by 100 mm in cross section, and the steel plates are 300 mm deep. What is the required thickness t of the steel plates if the allowable stresses are 120 MPa for the steel and 6.5 MPa for the wood? (Assume that the moduli of elasticity for the steel and wood are 210 GPa and 10 GPa, respectively, and disregard the weight of the beam.) + 75 mm + с TH 100 mm 4G+ Q4 34% + 300 mm W :
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Planar Stresses
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning