Exercise 17.5.15. Find x, y € Z12 such that a 0 and y = 0, but x - y = 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please do Exercise 17.5.15 and please show step by step and explain

**Proposition 17.5.12.** For any \( n \in \mathbb{N}^+ \), we have

\[ Z_n = \{ \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} \} \]

and \( \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} \) are all distinct.

**Exercise 17.5.13.** Prove Proposition 17.5.12. It is sufficient to show (a) \( \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} \) are distinct; and (b) for any integer, the equivalence class \( \overline{k} \) is one of \( \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} \).
♦

**Exercise 17.5.14.** Using the definitions of addition, subtraction, and multiplication given in part (c) of Definition 17.5.11, make tables that show the results of:

(a) addition modulo 4.

(b) subtraction modulo 5.

(c) multiplication modulo 6.

**Exercise 17.5.15.** Find \( x, y \in Z_{12} \) such that \( x \neq \overline{0} \) and \( y \neq \overline{0} \), but \( x \cdot y = \overline{0} \).
♦
Transcribed Image Text:**Proposition 17.5.12.** For any \( n \in \mathbb{N}^+ \), we have \[ Z_n = \{ \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} \} \] and \( \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} \) are all distinct. **Exercise 17.5.13.** Prove Proposition 17.5.12. It is sufficient to show (a) \( \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} \) are distinct; and (b) for any integer, the equivalence class \( \overline{k} \) is one of \( \overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1} \). ♦ **Exercise 17.5.14.** Using the definitions of addition, subtraction, and multiplication given in part (c) of Definition 17.5.11, make tables that show the results of: (a) addition modulo 4. (b) subtraction modulo 5. (c) multiplication modulo 6. **Exercise 17.5.15.** Find \( x, y \in Z_{12} \) such that \( x \neq \overline{0} \) and \( y \neq \overline{0} \), but \( x \cdot y = \overline{0} \). ♦
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,