Exercise 10.4.3 Suppose T: R³ R³ is a linear transformation such that →>> be another basis. 1 -8-8-8-8-8-8 T T (b) Find [TB,B 3 Let E= {e1,e2, e3} be the standard basis of R³, and let 3 B = {V1, V2, V3} - (a) Find the matrix of T with respect to E, i.e., find [T]E,E- T 0 {B-Q-A} = 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

can you please solve (a ) and ( b ) for this question?

**Exercise 10.4.3**

Suppose \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) is a linear transformation such that

\[ T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \quad T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}. \]

Let \( E = \{ \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \} \) be the standard basis of \( \mathbb{R}^3 \), and let

\[ B = \{ \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\} \]

be another basis.

(a) Find the matrix of \( T \) with respect to \( E \), i.e., find \( [T]_{E,E} \).

(b) Find \( [T]_{B,B} \).
Transcribed Image Text:**Exercise 10.4.3** Suppose \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) is a linear transformation such that \[ T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \quad T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}. \] Let \( E = \{ \mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3} \} \) be the standard basis of \( \mathbb{R}^3 \), and let \[ B = \{ \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\} \] be another basis. (a) Find the matrix of \( T \) with respect to \( E \), i.e., find \( [T]_{E,E} \). (b) Find \( [T]_{B,B} \).
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,