Exercise 10.4.2 Let B = in R². Find [x]B. -1 MGA 0 2 be a basis of R3 and let x = 41 -1 be a vector

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Exercise 10.4.2**

Let \( B = \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \right\} \) be a basis of \( \mathbb{R}^3 \) and let \( \mathbf{x} = \begin{bmatrix} 5 \\ -1 \\ 4 \end{bmatrix} \) be a vector in \( \mathbb{R}^2 \). Find \([ \mathbf{x} ]_B\).

---

This problem involves finding the coordinates of vector \(\mathbf{x}\) with respect to the given basis \( B \).
Transcribed Image Text:**Exercise 10.4.2** Let \( B = \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \right\} \) be a basis of \( \mathbb{R}^3 \) and let \( \mathbf{x} = \begin{bmatrix} 5 \\ -1 \\ 4 \end{bmatrix} \) be a vector in \( \mathbb{R}^2 \). Find \([ \mathbf{x} ]_B\). --- This problem involves finding the coordinates of vector \(\mathbf{x}\) with respect to the given basis \( B \).
Expert Solution
steps

Step by step

Solved in 5 steps with 11 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,