Exercise 10.1.2 Consider the following functions T: R³ → R2. For each function T, show that T is a linear transformation. Do this by showing that T is a matrix transformation, i.e., find a matrix A such that T(v) = Av. (a) T (b) T (c) T Z X Z X y Z (d) T y 1 1 = 2y-3x+z 7x+2y+z 3x - 11y+2z 3x+2y+z x+2y+6z 2y-5x+z x+y+z
Exercise 10.1.2 Consider the following functions T: R³ → R2. For each function T, show that T is a linear transformation. Do this by showing that T is a matrix transformation, i.e., find a matrix A such that T(v) = Av. (a) T (b) T (c) T Z X Z X y Z (d) T y 1 1 = 2y-3x+z 7x+2y+z 3x - 11y+2z 3x+2y+z x+2y+6z 2y-5x+z x+y+z
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
can you please solve (c) & (d) ?
![**Exercise 10.1.2**
Consider the following functions \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \). For each function \( T \), show that \( T \) is a linear transformation. Do this by showing that \( T \) is a matrix transformation, i.e., find a matrix \( A \) such that \( T(\mathbf{v}) = A\mathbf{v} \).
(a) \( T \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x + 2y + 3z \\ 2y - 3x + z \end{bmatrix} \).
(b) \( T \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 7x + 2y + z \\ 3x - 11y + 2z \end{bmatrix} \).
(c) \( T \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 3x + 2y + z \\ x + 2y + 6z \end{bmatrix} \).
(d) \( T \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 2y - 5x + z \\ x + y + z \end{bmatrix} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F98a85d3f-1221-4cd9-b5c2-c225eed9a46f%2F86959c89-c8d8-4ab9-8833-e34a76af7eba%2Funoyt89_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Exercise 10.1.2**
Consider the following functions \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \). For each function \( T \), show that \( T \) is a linear transformation. Do this by showing that \( T \) is a matrix transformation, i.e., find a matrix \( A \) such that \( T(\mathbf{v}) = A\mathbf{v} \).
(a) \( T \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x + 2y + 3z \\ 2y - 3x + z \end{bmatrix} \).
(b) \( T \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 7x + 2y + z \\ 3x - 11y + 2z \end{bmatrix} \).
(c) \( T \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 3x + 2y + z \\ x + 2y + 6z \end{bmatrix} \).
(d) \( T \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 2y - 5x + z \\ x + y + z \end{bmatrix} \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 33 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)