Exercise 1.9 Consider the following subspaces of R³: V₁ V₂ = ((1,0, 1, 1, 0), (-1, 1, 0, 0, 1), (0, 0, 0, 1, -1)) ((0, 1, 1, 1, 1), (1, 1, 2, 2, 1), (1, 0, 1, 1, 1)) a) Determine a basis B₁ of V₁ and a basis B₂ of V₂. Compute dim(V₁) and dim(V₂). b) Determine a basis of V₁ V₂ and one of V₁ + V₂. Compute dim(V₁V₂) and dim(V₁+V₂). Are the subspaces V₁ and V₂ in direct sum? c) Write if possible the vector v = (1,0, 1, 1, 0) as a sum v = V₁ + V₂ with v₁ € V₁, V2 € V₂ and v₁ (0,0,0,0,0) and v2 # (0, 0, 0, 0, 0). Is the expression unique?
Exercise 1.9 Consider the following subspaces of R³: V₁ V₂ = ((1,0, 1, 1, 0), (-1, 1, 0, 0, 1), (0, 0, 0, 1, -1)) ((0, 1, 1, 1, 1), (1, 1, 2, 2, 1), (1, 0, 1, 1, 1)) a) Determine a basis B₁ of V₁ and a basis B₂ of V₂. Compute dim(V₁) and dim(V₂). b) Determine a basis of V₁ V₂ and one of V₁ + V₂. Compute dim(V₁V₂) and dim(V₁+V₂). Are the subspaces V₁ and V₂ in direct sum? c) Write if possible the vector v = (1,0, 1, 1, 0) as a sum v = V₁ + V₂ with v₁ € V₁, V2 € V₂ and v₁ (0,0,0,0,0) and v2 # (0, 0, 0, 0, 0). Is the expression unique?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Exercise 1.9 Consider the following subspaces of R5:
V₁=
V₂ =
((1,0, 1, 1, 0), (-1, 1, 0, 0, 1), (0, 0, 0, 1, -1))
((0, 1, 1, 1, 1), (1, 1, 2, 2, 1), (1, 0, 1, 1, 1))
a) Determine a basis B₁ of V₁ and a basis B2 of V₂. Compute dim(V₁) and dim(V₂).
b) Determine a basis of V₁ V₂ and one of V₁ + V₂. Compute dim(V₁V₂) and dim(V₁+V₂).
Are the subspaces V₁ and V₂ in direct sum?
c) Write if possible the vector v = (1, 0, 1, 1, 0) as a sum v = V₁ + V₂ with v₁ € V₁, V₂ € V₂
and v₁ (0,0,0,0,0) and v₂ # (0, 0, 0, 0, 0). Is the expression unique?
d) Determine, if it exists, a subspace T ≤ R5 such that (TV₁) V₂ = (TV₂) V₁ =
V₁ + V₂.
e) Determine S < R5 such that S (V₁ V₂) = V₁ + V₂. Is it unique?
f) For each possible choice of S≤ R5 such that S (V₁ V₂) = V₁+V₂, compute dim(SV₁)
and dim(SnV₂).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Feac25eb9-213c-4be9-ac5b-c069dffd70f0%2Fb521d4bc-4a22-41e0-aa23-b558faba0bd6%2F33ej3m_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Exercise 1.9 Consider the following subspaces of R5:
V₁=
V₂ =
((1,0, 1, 1, 0), (-1, 1, 0, 0, 1), (0, 0, 0, 1, -1))
((0, 1, 1, 1, 1), (1, 1, 2, 2, 1), (1, 0, 1, 1, 1))
a) Determine a basis B₁ of V₁ and a basis B2 of V₂. Compute dim(V₁) and dim(V₂).
b) Determine a basis of V₁ V₂ and one of V₁ + V₂. Compute dim(V₁V₂) and dim(V₁+V₂).
Are the subspaces V₁ and V₂ in direct sum?
c) Write if possible the vector v = (1, 0, 1, 1, 0) as a sum v = V₁ + V₂ with v₁ € V₁, V₂ € V₂
and v₁ (0,0,0,0,0) and v₂ # (0, 0, 0, 0, 0). Is the expression unique?
d) Determine, if it exists, a subspace T ≤ R5 such that (TV₁) V₂ = (TV₂) V₁ =
V₁ + V₂.
e) Determine S < R5 such that S (V₁ V₂) = V₁ + V₂. Is it unique?
f) For each possible choice of S≤ R5 such that S (V₁ V₂) = V₁+V₂, compute dim(SV₁)
and dim(SnV₂).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)