EXERCISE 1.2 In physics, energy E carries dimensions of mass times length squared divided by time squared. Use dimensional analysis to derive a relationship for energy in terms of mass m and speed v, up to a constant of proportionality. Set the speed equal to c, the speed of light, and the constant of proportionality equal to 1 to get the most famous equation in physics. (Note, however, that the first relationship is associated with energy of motion, and the second with energy of mass. See Chapter 26.) ANSWER E= kmv² - E= mc? when k = 1 and v = c.
EXERCISE 1.2 In physics, energy E carries dimensions of mass times length squared divided by time squared. Use dimensional analysis to derive a relationship for energy in terms of mass m and speed v, up to a constant of proportionality. Set the speed equal to c, the speed of light, and the constant of proportionality equal to 1 to get the most famous equation in physics. (Note, however, that the first relationship is associated with energy of motion, and the second with energy of mass. See Chapter 26.) ANSWER E= kmv² - E= mc? when k = 1 and v = c.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps