Excercise 1: Controller design. The block diagram for an aircraft's attitude control system is shown below Controller Plant 2s +4 y е u C(8) s2 0.1s4 п We will attempt to design a controller that meets the following specifications: Rise time of less than 1.2 seconds Settling time of less than 4 seconds Steady-state error less than 1%, for a step input For sensor-noise rejection reasons, the controller's gain cannot exceed 10. (a) Find the (closed-loop) transfer function fromr to y, for a proportional controller C(s) = kp. (b) Translate the given specifications into constraints on the values of Ç, wn, and o, for a standard second-order system. (c) Sketch by hand the root locus for the purely proportional controller. Please briefly explain the rules you applied to obtain your sketch, and show calculations for any asymptotes (d) What range of kp values are allowed such that all requirements are satisfied except steady-state error? Mark on the root locus plots from part (c) the points that correspond to these values of kp. (e) Find an expression for the steady-state error. Can you find a purely proportional controller that meets all of the specifications? If so, find a suitable value of kp; if not, find the "best" value of k, that you can. Justify your interpretation of "best." Use Matlab to plot the step response for the closed-loop system, and verify that the response agrees with your predictions. (f) Now consider an integral controller, C(s) = ki/s. Find the transfer function from r to y and sketch the root locus with respect to ki for this system. Please briefly explain the rules you applied to obtain your sketch, and show calculations for any asymptotes.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

for subpart  d- f

Excercise 1: Controller design. The block diagram for an aircraft's attitude control system is shown
below
Controller
Plant
2s +4
y
е
u
C(8)
s2 0.1s4
п
We will attempt to design a controller that meets the following specifications:
Rise time of less than 1.2 seconds
Settling time of less than 4 seconds
Steady-state error less than 1%, for a step input
For sensor-noise rejection reasons, the controller's gain cannot exceed 10.
(a) Find the (closed-loop) transfer function fromr to y, for a proportional controller C(s) = kp.
(b) Translate the given specifications into constraints on the values of Ç, wn, and o, for a standard
second-order system.
(c) Sketch by hand the root locus for the purely proportional controller. Please briefly explain the rules
you applied to obtain your sketch, and show calculations for any asymptotes
(d) What range of kp values are allowed such that all requirements are satisfied except steady-state
error? Mark on the root locus plots from part (c) the points that correspond to these values of kp.
(e) Find an expression for the steady-state error. Can you find a purely proportional controller that
meets all of the specifications? If so, find a suitable value of kp; if not, find the "best" value of k,
that you can. Justify your interpretation of "best." Use Matlab to plot the step response for the
closed-loop system, and verify that the response agrees with your predictions.
(f) Now consider an integral controller, C(s) = ki/s. Find the transfer function from r to y and sketch
the root locus with respect to ki for this system. Please briefly explain the rules you applied to
obtain your sketch, and show calculations for any asymptotes.
Transcribed Image Text:Excercise 1: Controller design. The block diagram for an aircraft's attitude control system is shown below Controller Plant 2s +4 y е u C(8) s2 0.1s4 п We will attempt to design a controller that meets the following specifications: Rise time of less than 1.2 seconds Settling time of less than 4 seconds Steady-state error less than 1%, for a step input For sensor-noise rejection reasons, the controller's gain cannot exceed 10. (a) Find the (closed-loop) transfer function fromr to y, for a proportional controller C(s) = kp. (b) Translate the given specifications into constraints on the values of Ç, wn, and o, for a standard second-order system. (c) Sketch by hand the root locus for the purely proportional controller. Please briefly explain the rules you applied to obtain your sketch, and show calculations for any asymptotes (d) What range of kp values are allowed such that all requirements are satisfied except steady-state error? Mark on the root locus plots from part (c) the points that correspond to these values of kp. (e) Find an expression for the steady-state error. Can you find a purely proportional controller that meets all of the specifications? If so, find a suitable value of kp; if not, find the "best" value of k, that you can. Justify your interpretation of "best." Use Matlab to plot the step response for the closed-loop system, and verify that the response agrees with your predictions. (f) Now consider an integral controller, C(s) = ki/s. Find the transfer function from r to y and sketch the root locus with respect to ki for this system. Please briefly explain the rules you applied to obtain your sketch, and show calculations for any asymptotes.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 10 steps with 9 images

Blurred answer
Knowledge Booster
Logic Gate and Its Application
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,