Example 8.1 Steam generated in a power plant at a pressure of 8,600 kPa and a temperature of 500°C is fed to a turbine. Exhaust from the turbine enters a condenser at 10 kPa, where it is condensed to saturated liquid, which is then pumped to the boller. (a) What is the thermal efficiency of a Rankine cycle operating at these condi- tions? (b) What is the thermal efficiency of a practical cycle operating at these conditions if the turbine efficiency and pump efficiency are both 0.75? (c) If the rating of the power cycle of part (b) is 80,000 kW, what is the steam rate and what are the heat-transfer rates in the boiler and condenser?
Example 8.1 Steam generated in a power plant at a pressure of 8,600 kPa and a temperature of 500°C is fed to a turbine. Exhaust from the turbine enters a condenser at 10 kPa, where it is condensed to saturated liquid, which is then pumped to the boller. (a) What is the thermal efficiency of a Rankine cycle operating at these condi- tions? (b) What is the thermal efficiency of a practical cycle operating at these conditions if the turbine efficiency and pump efficiency are both 0.75? (c) If the rating of the power cycle of part (b) is 80,000 kW, what is the steam rate and what are the heat-transfer rates in the boiler and condenser?
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
this is a thermodynamics question thank you

Transcribed Image Text:Example 8.1
Steam generated in a power plant at a pressure of 8,600 kPa and a temperature of
500°C is fed to a turbine. Exhaust from the turbine enters a condenser at 10 kPa,
where it is condensed to saturated liquid, which is then pumped to the boller.
(a) What is the thermal efficiency of a Rankine cycle operating at these condi-
tions?
(b) What is the thermal efficiency of a practical cycle operating at these conditions
if the turbine efficiency and pump efficiency are both 0.75?
(c) If the rating of the power cycle of part (b) is 80,000 kW, what is the steam rate
and what are the heat-transfer rates in the boiler and condenser?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps

Recommended textbooks for you

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The