Example 3. Let fr (1) =12k+1, ke No. (3.10) Then Dft =R and system (2.49) becomes 2k+1 + 'n-2 (ax + by) *, ne No. (3.11) 2k+1 Yn-2 2k+1 2k+1 Xn+1 = > Yn+1 = Here we can also assume that parameters a, b and initial values x-2, x-1, xo, y–2, y–1, yo are complex numbers, since function (3.10) is "1 – 1" on Df = C. Function (3.10) is an involution: f'(1) =1, tE Dp- We see that (2.59) and (2.60) hold. Using (3.10) in (2.59) and (2.60), we obtain the general solution to system (3.11): ( Jn+1+Jn+1 fx (xo) + Int1-Ja+1 fi (y0)+n+2+/a+2 fx (x=1) Xn = 2 2 )د ه )- + Jn- J Jn 1)+b: 2 2 2 Jn+1+Jn+12k+1 In+1 - Jn+1,2k+ 2k+1 2 2 2 چر ہ Jn+2-Jn+2 2k+1+ + Jn+J Jn-J +b" 24+1 Y-2 (3.12) 2 2 2 for n >-2, Jn+2-Jn+2 f Yn = f" (- )د )(ه ) a + (Jnt! In+1+Jht1 fx (xo) + 2 fR (yo)+ 2 2 Jn :-2)+b- 2 2 ( Jnt1 -Jn+12k+1 2k+1 %3D 2 2 2 ,)پی و ر + Ja+2+Jn+2 ,2k+! +b Jn-J Jn+J, +b- (3.13) 2 2 for n >-2.
Example 3. Let fr (1) =12k+1, ke No. (3.10) Then Dft =R and system (2.49) becomes 2k+1 + 'n-2 (ax + by) *, ne No. (3.11) 2k+1 Yn-2 2k+1 2k+1 Xn+1 = > Yn+1 = Here we can also assume that parameters a, b and initial values x-2, x-1, xo, y–2, y–1, yo are complex numbers, since function (3.10) is "1 – 1" on Df = C. Function (3.10) is an involution: f'(1) =1, tE Dp- We see that (2.59) and (2.60) hold. Using (3.10) in (2.59) and (2.60), we obtain the general solution to system (3.11): ( Jn+1+Jn+1 fx (xo) + Int1-Ja+1 fi (y0)+n+2+/a+2 fx (x=1) Xn = 2 2 )د ه )- + Jn- J Jn 1)+b: 2 2 2 Jn+1+Jn+12k+1 In+1 - Jn+1,2k+ 2k+1 2 2 2 چر ہ Jn+2-Jn+2 2k+1+ + Jn+J Jn-J +b" 24+1 Y-2 (3.12) 2 2 2 for n >-2, Jn+2-Jn+2 f Yn = f" (- )د )(ه ) a + (Jnt! In+1+Jht1 fx (xo) + 2 fR (yo)+ 2 2 Jn :-2)+b- 2 2 ( Jnt1 -Jn+12k+1 2k+1 %3D 2 2 2 ,)پی و ر + Ja+2+Jn+2 ,2k+! +b Jn-J Jn+J, +b- (3.13) 2 2 for n >-2.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show me the determine blue and all information here
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,