EXAMPLE 3 Maximizing Volume A supplier of bolts wants to create open boxes for the bolts by cutting a square from each corner of a 12-in. by 12-in. piece of metal and then folding up the sides. What size square should be cut from each corner to produce a box of maximum volume? 0001 APPLY IT SOLUTION Let x represent the length of a side of the square that is cut from each corner, as shown in Figure 8(a). The width of the box is 12 2x, with the length also 12 As shown in Figure 8(b), the depth of the box will be x inches. The volume of the box is given by the product of the length, width, and height. In this example, the volume, V(x), depends on x: 2x. V(x) = x(12 - 2x)(12 - 2x) = 144x – 48x2 + 4x³. %3D %3D Clearly, 0 < x, and since neither the length nor the width can be negative, 0 < 12 – 2x, so x < 6. Thus, the domain of V is the interval 0, 6]. ninmob sdi o1duovitoged Jer ods 0 21 12-2х — 0000 x = depth 002 12 2x 12 2x (a) (b) FIGURE 8 766 CHAPTER 14 Applications of the Derivative Extrema Candidates The derivative is V'(x) = 144 - 96x + 12x². Set this derivative equal to 0. %3D х V(x) 12x2 - 96x + 144 = 0 12(x² - 8x + 12) = 0 12(x - 2)(x - 6) =D 0 %3D 128 Maximum 6. 0. x - 2 = 0 x – 6 = 0 %3D or %3D %3D YOUR TURN 3 Repeat Example 3 using an 8-m by 8-m piece of metal. Find V(x) for x equal to 0, 2, and 6 to find the depth that will maximize the volume. The table indicates that the box will have maximum volume when x = 2 and that the maximum volume will be 128 in. %3D 3 TRY YOUR TURN 3

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Concept explainers
Question

Your turn 3

EXAMPLE 3
Maximizing Volume
A supplier of bolts wants to create open boxes for the bolts by cutting a square from each
corner of a 12-in. by 12-in. piece of metal and then folding up the sides. What size square
should be cut from each corner to produce a box of maximum volume?
0001
APPLY IT SOLUTION Let x represent the length of a side of the square that is cut from each corner,
as shown in Figure 8(a). The width of the box is 12 2x, with the length also 12
As shown in Figure 8(b), the depth of the box will be x inches. The volume of the box is
given by the product of the length, width, and height. In this example, the volume, V(x),
depends on x:
2x.
V(x) = x(12 - 2x)(12 - 2x) = 144x – 48x2 + 4x³.
%3D
%3D
Clearly, 0 < x, and since neither the length nor the width can be negative, 0 < 12 – 2x, so
x < 6. Thus, the domain of V is the interval 0, 6].
ninmob sdi o1duovitoged
Jer ods
0 21
12-2х —
0000
x = depth
002
12 2x
12 2x
(a)
(b)
FIGURE 8
Transcribed Image Text:EXAMPLE 3 Maximizing Volume A supplier of bolts wants to create open boxes for the bolts by cutting a square from each corner of a 12-in. by 12-in. piece of metal and then folding up the sides. What size square should be cut from each corner to produce a box of maximum volume? 0001 APPLY IT SOLUTION Let x represent the length of a side of the square that is cut from each corner, as shown in Figure 8(a). The width of the box is 12 2x, with the length also 12 As shown in Figure 8(b), the depth of the box will be x inches. The volume of the box is given by the product of the length, width, and height. In this example, the volume, V(x), depends on x: 2x. V(x) = x(12 - 2x)(12 - 2x) = 144x – 48x2 + 4x³. %3D %3D Clearly, 0 < x, and since neither the length nor the width can be negative, 0 < 12 – 2x, so x < 6. Thus, the domain of V is the interval 0, 6]. ninmob sdi o1duovitoged Jer ods 0 21 12-2х — 0000 x = depth 002 12 2x 12 2x (a) (b) FIGURE 8
766 CHAPTER 14 Applications of the Derivative
Extrema Candidates
The derivative is V'(x) = 144 - 96x + 12x². Set this derivative equal to 0.
%3D
х
V(x)
12x2 - 96x + 144 = 0
12(x² - 8x + 12) = 0
12(x - 2)(x - 6) =D 0
%3D
128
Maximum
6.
0.
x - 2 = 0
x – 6 = 0
%3D
or
%3D
%3D
YOUR TURN 3 Repeat
Example 3 using an 8-m by 8-m
piece of metal.
Find V(x) for x equal to 0, 2, and 6 to find the depth that will maximize the volume. The
table indicates that the box will have maximum volume when x = 2 and that the maximum
volume will be 128 in.
%3D
3
TRY YOUR TURN 3
Transcribed Image Text:766 CHAPTER 14 Applications of the Derivative Extrema Candidates The derivative is V'(x) = 144 - 96x + 12x². Set this derivative equal to 0. %3D х V(x) 12x2 - 96x + 144 = 0 12(x² - 8x + 12) = 0 12(x - 2)(x - 6) =D 0 %3D 128 Maximum 6. 0. x - 2 = 0 x – 6 = 0 %3D or %3D %3D YOUR TURN 3 Repeat Example 3 using an 8-m by 8-m piece of metal. Find V(x) for x equal to 0, 2, and 6 to find the depth that will maximize the volume. The table indicates that the box will have maximum volume when x = 2 and that the maximum volume will be 128 in. %3D 3 TRY YOUR TURN 3
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Knowledge Booster
Points, Lines and Planes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning