Example 2: Use least-squares regression to fit a straight line to x and y values given below. Along with the slope and intercept, compute the standard error of the estimate and the correlation coefficient. Plot the data and the regression line. 15 17 4. 11 12 19 9 8 7 6. 7 6 10 12 12 Σy 82 nExiy-ExEy a = nEx1²-Ex1)² n = 10 10(911)-(95)(82) = 0.3524699599 10(1277)-(95)z Ex;yi = 911 95 = 9.5 10 ao = ỹ – aqã = 8.2 – 0.3524699599(9.5) = 4.851535381 Ex;? = 1277 y =- = 8.2 10 Σχ 95 Therefore, the least square fit is: y = 4.851535381 + 0.3524699599x Least-Squares Fit of a Straight Line 14 Standard error of the estimate 12 Sr Evi-ao-a‚x¡)² Vn-2 n-2 10 Sy 9.073965287 %3D = 1.0650097 10-2 6 Correlation coefficient r2 = St-Sr - EGi-y)²-E(yi-ao-a,x;)² St 2 55.60-9.073965287 r2 = 55,60 10 15 20 r2 = 0.8367991855 r = 0.9147672849 a.) Repeat the problem Example 2, but regress x versus y variables. Interpret your results. Plot the data and the regression line. Interpret your results. that is, switch the 4. 6. 11 12 15 17 19 y 7 8 7 10 12 12
Example 2: Use least-squares regression to fit a straight line to x and y values given below. Along with the slope and intercept, compute the standard error of the estimate and the correlation coefficient. Plot the data and the regression line. 15 17 4. 11 12 19 9 8 7 6. 7 6 10 12 12 Σy 82 nExiy-ExEy a = nEx1²-Ex1)² n = 10 10(911)-(95)(82) = 0.3524699599 10(1277)-(95)z Ex;yi = 911 95 = 9.5 10 ao = ỹ – aqã = 8.2 – 0.3524699599(9.5) = 4.851535381 Ex;? = 1277 y =- = 8.2 10 Σχ 95 Therefore, the least square fit is: y = 4.851535381 + 0.3524699599x Least-Squares Fit of a Straight Line 14 Standard error of the estimate 12 Sr Evi-ao-a‚x¡)² Vn-2 n-2 10 Sy 9.073965287 %3D = 1.0650097 10-2 6 Correlation coefficient r2 = St-Sr - EGi-y)²-E(yi-ao-a,x;)² St 2 55.60-9.073965287 r2 = 55,60 10 15 20 r2 = 0.8367991855 r = 0.9147672849 a.) Repeat the problem Example 2, but regress x versus y variables. Interpret your results. Plot the data and the regression line. Interpret your results. that is, switch the 4. 6. 11 12 15 17 19 y 7 8 7 10 12 12
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
100%
Subject: NUMERICAL METHODS
Directions: In example no. 2, the problem and solution are both given. Please answer letter a.
Thank you in advance tutors!
![Example 2:
Use least-squares regression to fit a straight line to x and y values given below.
Along with the slope and intercept, compute the standard error of the estimate
and the correlation coefficient. Plot the data and the regression line.
4.
11
12
15
17
19
9 8 7
y
5
7
10
12
12
nEx¡yt-Ex; £ yi
η Σx2-Σ x)2
10(911)-(95)(82)
%3D
n = 10
Σy82
a, =
= 0.3524699599
10(1277)-(95)z
Ex¡yi = 911
95
= 9.5
10
ao = ỹ – ajã = 8.2 – 0.3524699599(9.5) = 4.851535381
Σχ 1277
=
= 8.2
ΣΧ 95
Therefore, the least square fit is:
y = 4.851535381 + 0.3524699599x
Least-Squares Fit of a Straight Line
14
Standard error of the estimate
12
Sr
Vn-2
Evi-ao-a;x;)²
%3D
п-2
10
9.073965287
8
Sy =
= 1.0650097
10-2
6
Correlation coefficient
4
EGi-y)²-E(y;-ao-a,x;)?
r2 = St-Sr -
St
55.60-9.073965287
r2 =
55.60
10
15
20
r2 = 0.8367991855
r = 0.9147672849
a.)
Repeat the problem Example 2, but regress x versus y - that is, switch the
variables. Interpret your results. Plot the data and the regression line.
Interpret your results.
4
9.
11
12
15
17
19
y
6
7
6
9
8 7
10
12
12](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F205645bf-0d0c-48a3-8d3d-d8616d5713f0%2Fff8e6a07-45f2-4c8f-aa32-01bef4a9ef8f%2Fw30jm6h_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Example 2:
Use least-squares regression to fit a straight line to x and y values given below.
Along with the slope and intercept, compute the standard error of the estimate
and the correlation coefficient. Plot the data and the regression line.
4.
11
12
15
17
19
9 8 7
y
5
7
10
12
12
nEx¡yt-Ex; £ yi
η Σx2-Σ x)2
10(911)-(95)(82)
%3D
n = 10
Σy82
a, =
= 0.3524699599
10(1277)-(95)z
Ex¡yi = 911
95
= 9.5
10
ao = ỹ – ajã = 8.2 – 0.3524699599(9.5) = 4.851535381
Σχ 1277
=
= 8.2
ΣΧ 95
Therefore, the least square fit is:
y = 4.851535381 + 0.3524699599x
Least-Squares Fit of a Straight Line
14
Standard error of the estimate
12
Sr
Vn-2
Evi-ao-a;x;)²
%3D
п-2
10
9.073965287
8
Sy =
= 1.0650097
10-2
6
Correlation coefficient
4
EGi-y)²-E(y;-ao-a,x;)?
r2 = St-Sr -
St
55.60-9.073965287
r2 =
55.60
10
15
20
r2 = 0.8367991855
r = 0.9147672849
a.)
Repeat the problem Example 2, but regress x versus y - that is, switch the
variables. Interpret your results. Plot the data and the regression line.
Interpret your results.
4
9.
11
12
15
17
19
y
6
7
6
9
8 7
10
12
12
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman