Example 1.3 The blades of a wind turbine turn a large shaft at a relatively slow speed. The rotational speed is increased by a gearbox that has an efficiency of 0.93. In turn, the gearbox output shaft drives an electric generator with an efficiency of 0.95. The cylindrical nacelle, which houses the gearbox, generator, and associated equipment, is of length L = 6 m and diameter D= 3 m. If the turbine produces P = 2.5 MW of electrical power, and the air and surroundings temperatures are T = 25 °C and Tsur = 20 °C, respectively, determine the minimum possible operating temperature inside the nacelle. The emissivity of the nacelle is 0.83, and the convective heat transfer coefficient is h = 35 W/m² K. The surface of the nacelle that is adjacent to the blade hub can be considered to be adiabatic and color irradiation m he neglected
Example 1.3 The blades of a wind turbine turn a large shaft at a relatively slow speed. The rotational speed is increased by a gearbox that has an efficiency of 0.93. In turn, the gearbox output shaft drives an electric generator with an efficiency of 0.95. The cylindrical nacelle, which houses the gearbox, generator, and associated equipment, is of length L = 6 m and diameter D= 3 m. If the turbine produces P = 2.5 MW of electrical power, and the air and surroundings temperatures are T = 25 °C and Tsur = 20 °C, respectively, determine the minimum possible operating temperature inside the nacelle. The emissivity of the nacelle is 0.83, and the convective heat transfer coefficient is h = 35 W/m² K. The surface of the nacelle that is adjacent to the blade hub can be considered to be adiabatic and color irradiation m he neglected
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:Example 1.3
The blades of a wind turbine turn a large shaft at a relatively slow speed. The
rotational speed is increased by a gearbox that has an efficiency of 0.93. In turn, the
gearbox output shaft drives an electric generator with an efficiency of 0.95. The
cylindrical nacelle, which houses the gearbox, generator, and associated equipment,
is of length L = 6 m and diameter D= 3 m. If the turbine produces P = 2.5 MW of
electrical power, and the air and surroundings temperatures are T = 25 °C and Tsur =
20 °C, respectively, determine the minimum possible operating temperature inside
the nacelle. The emissivity of the nacelle is 0.83, and the convective heat transfer
coefficient is h = 35 W/m² K. The surface of the nacelle that is adjacent to the blade
hub can be considered to be adiabatic, and solar irradiation may be neglected.
Use Fin or N number of fins to reduce the Ts of the
nacelle less than 143 °C
T-20°C
Hub
A-35 W
7,-0.83
Generator,-0.95
Garb-0.93
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY