Ex 4.) Let Sbe a non empty bounded set in 1. aj Let azo, and let a S:= {as: SES}. Prove that inf (as) = a inf 5, sup (as) = a sups. b) Let beo and let bS={bs: SES}. Prove that inf (b5) = b sup 5₁ sup (bs) =binf S. "1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Ex 4:
4.) Let S be a non empty bounded set in IR.
aj Let azo, and let S := {as: SES}. Prove that
inf (as) - a inf 5, sup (as) = a sups.
b. Let beo and let bS={bs: SES}. Prove that
inf (b5) = b supS, sup (bs) =binf S. //
Transcribed Image Text:Ex 4: 4.) Let S be a non empty bounded set in IR. aj Let azo, and let S := {as: SES}. Prove that inf (as) - a inf 5, sup (as) = a sups. b. Let beo and let bS={bs: SES}. Prove that inf (b5) = b supS, sup (bs) =binf S. //
Expert Solution
Step 1: "Introduction to the solution"

Let S be any -empty bounded set in straight real numbers.

a) Let a greater than 0 , and let a S space colon equals open curly brackets a s colon space s element of S close curly brackets 

Since, S  is a bounded subset of straight real numbers, Supopen parentheses S close parentheses and Infopen parentheses S close parentheses exists.

Let S u p left parenthesis S right parenthesis equals M comma space I n f left parenthesis S right parenthesis equals m

Since, Sup(S)equals M, it  follows  that open parentheses 1 close parentheses s less or equal than M comma for all s element of S....... left parenthesis 1 right parenthesis

                                               and  open parentheses 2 close parentheses for all epsilon greater than 0 comma space there  exists an element y element of S such  that y greater than left parenthesis M minus epsilon over a right parenthesis.......... left parenthesis 2 right parenthesis

Since,Inf(S)=M, it follows that (3) m less or equal than s comma space for all s element of S........ left parenthesis 3 right parenthesis

                                        and  open parentheses 4 close parentheses for all epsilon greater than 0 comma there exists an element  z element of S such that z less than left parenthesis m plus epsilon over a right parenthesis........... left parenthesis 4 right parenthesis


steps

Step by step

Solved in 3 steps with 55 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,