We require the expansion for IW/>4: f(z) = Σ 1 ทะ 4- (w)nt ทะz 247-2 (iw) n Now we substitute back 2-21=w: f(z) = - 0047-2 1-2 (i (z-zi))^ ) 17-2; /> 4. 17=2 Now we are going to study one of the important transformations, the simplest after the linear and the inverse transformations, the Möbius transformation. First, let us briefly go over linear transformations. Ex 15.10: What is the laurent series of f(z) = (Z-1) (7-2) on the annulus A=√ZEα: 1 \ Z) > 1 A=D ทะเ -2i Thus, is valid only on the annular region 14. H The region here is a domain: the exterior of the circle centered at (0, 2i) of radius 4. We want a series expansion about to = di To do this we make a substitution Set W= Z-2i and look for the expansion in W, where | W | > 4 To make the series expension easier we manipulate again f(z) into a form similar to the series expansion for A-Z. We get: Now we use standard geometric series and 1 & (ix) n 4iw 4 (Win 1 *(Z) = 4iw (1-iw) 4 compute! 1 4iw (1-iw) - 4iw 1w/4 IWI>4
We require the expansion for IW/>4: f(z) = Σ 1 ทะ 4- (w)nt ทะz 247-2 (iw) n Now we substitute back 2-21=w: f(z) = - 0047-2 1-2 (i (z-zi))^ ) 17-2; /> 4. 17=2 Now we are going to study one of the important transformations, the simplest after the linear and the inverse transformations, the Möbius transformation. First, let us briefly go over linear transformations. Ex 15.10: What is the laurent series of f(z) = (Z-1) (7-2) on the annulus A=√ZEα: 1 \ Z) > 1 A=D ทะเ -2i Thus, is valid only on the annular region 14. H The region here is a domain: the exterior of the circle centered at (0, 2i) of radius 4. We want a series expansion about to = di To do this we make a substitution Set W= Z-2i and look for the expansion in W, where | W | > 4 To make the series expension easier we manipulate again f(z) into a form similar to the series expansion for A-Z. We get: Now we use standard geometric series and 1 & (ix) n 4iw 4 (Win 1 *(Z) = 4iw (1-iw) 4 compute! 1 4iw (1-iw) - 4iw 1w/4 IWI>4
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Using the example, can you show the Laurent series for (2+3z)/(z^2+z^z^4), 0<abs(z)<1
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 1 steps
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,