evalunte the indefindte integral dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Calculus Problem: Evaluating an Indefinite Integral**

In this problem, we are tasked with evaluating the indefinite integral given below:

\[ \int \frac{(\ln(x))^{20}}{x} \, dx \]

Here, \(\ln(x)\) represents the natural logarithm of \(x\), and we are interested in finding the indefinite integral of the function \(\frac{(\ln(x))^{20}}{x}\) with respect to \(x\).

### Step-by-Step Solution:

To solve this integral, we use the substitution method:

1. **Substitute \(u = \ln(x)\)**:
   - Therefore, \(du = \frac{1}{x} \, dx\).

2. **Rewrite the integral in terms of \(u\)**:
   \[ \int \frac{(\ln(x))^{20}}{x} \, dx = \int u^{20} \, du \]

3. **Evaluate the integral in terms of \(u\)**:
   \[ \int u^{20} \, du = \frac{u^{21}}{21} + C \]
   - Here, \(C\) represents the constant of integration.

4. **Substitute \(u = \ln(x)\) back into the result**:
   \[ \frac{(\ln(x))^{21}}{21} + C \]

### Final Answer:

\[ \boxed{ \frac{(\ln(x))^{21}}{21} + C } \]

This represents the indefinite integral of the given function \(\frac{(\ln(x))^{20}}{x}\) with respect to \(x\).
Transcribed Image Text:**Calculus Problem: Evaluating an Indefinite Integral** In this problem, we are tasked with evaluating the indefinite integral given below: \[ \int \frac{(\ln(x))^{20}}{x} \, dx \] Here, \(\ln(x)\) represents the natural logarithm of \(x\), and we are interested in finding the indefinite integral of the function \(\frac{(\ln(x))^{20}}{x}\) with respect to \(x\). ### Step-by-Step Solution: To solve this integral, we use the substitution method: 1. **Substitute \(u = \ln(x)\)**: - Therefore, \(du = \frac{1}{x} \, dx\). 2. **Rewrite the integral in terms of \(u\)**: \[ \int \frac{(\ln(x))^{20}}{x} \, dx = \int u^{20} \, du \] 3. **Evaluate the integral in terms of \(u\)**: \[ \int u^{20} \, du = \frac{u^{21}}{21} + C \] - Here, \(C\) represents the constant of integration. 4. **Substitute \(u = \ln(x)\) back into the result**: \[ \frac{(\ln(x))^{21}}{21} + C \] ### Final Answer: \[ \boxed{ \frac{(\ln(x))^{21}}{21} + C } \] This represents the indefinite integral of the given function \(\frac{(\ln(x))^{20}}{x}\) with respect to \(x\).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Indefinite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning