Evaluate √x² cos (2³) de dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

q8

### Problem Statement:
Evaluate the integral:
\[ \int x^2 \cos(x^3) \, dx \]

### Solution:
To solve this integral, we can use the method of substitution. 

### Step-by-Step Solution:

1. **Substitution:**
   Let \( u = x^3 \). Then, \( du = 3x^2 dx \) or \( \frac{1}{3} du = x^2 dx \).

2. **Rewrite the Integral:**
   Substitute \( u \) and \( du \) into the integral.
   \[ \int x^2 \cos(x^3) \, dx = \int \cos(u) \cdot \frac{1}{3} \, du \]

3. **Simplify and Integrate:**
   \[ \frac{1}{3} \int \cos(u) \, du \]
   The integral of \( \cos(u) \) with respect to \( u \) is \( \sin(u) \). Thus,
   \[ \frac{1}{3} \sin(u) + C \]

4. **Back-Substitute \( u \):**
   Replace \( u \) with \( x^3 \) to get the final answer.
   \[ \frac{1}{3} \sin(x^3) + C \]

### Final Answer:
\[ \int x^2 \cos(x^3) \, dx = \frac{1}{3} \sin(x^3) + C \]

Where \( C \) is the constant of integration.
Transcribed Image Text:### Problem Statement: Evaluate the integral: \[ \int x^2 \cos(x^3) \, dx \] ### Solution: To solve this integral, we can use the method of substitution. ### Step-by-Step Solution: 1. **Substitution:** Let \( u = x^3 \). Then, \( du = 3x^2 dx \) or \( \frac{1}{3} du = x^2 dx \). 2. **Rewrite the Integral:** Substitute \( u \) and \( du \) into the integral. \[ \int x^2 \cos(x^3) \, dx = \int \cos(u) \cdot \frac{1}{3} \, du \] 3. **Simplify and Integrate:** \[ \frac{1}{3} \int \cos(u) \, du \] The integral of \( \cos(u) \) with respect to \( u \) is \( \sin(u) \). Thus, \[ \frac{1}{3} \sin(u) + C \] 4. **Back-Substitute \( u \):** Replace \( u \) with \( x^3 \) to get the final answer. \[ \frac{1}{3} \sin(x^3) + C \] ### Final Answer: \[ \int x^2 \cos(x^3) \, dx = \frac{1}{3} \sin(x^3) + C \] Where \( C \) is the constant of integration.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning