Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
q8
![### Problem Statement:
Evaluate the integral:
\[ \int x^2 \cos(x^3) \, dx \]
### Solution:
To solve this integral, we can use the method of substitution.
### Step-by-Step Solution:
1. **Substitution:**
Let \( u = x^3 \). Then, \( du = 3x^2 dx \) or \( \frac{1}{3} du = x^2 dx \).
2. **Rewrite the Integral:**
Substitute \( u \) and \( du \) into the integral.
\[ \int x^2 \cos(x^3) \, dx = \int \cos(u) \cdot \frac{1}{3} \, du \]
3. **Simplify and Integrate:**
\[ \frac{1}{3} \int \cos(u) \, du \]
The integral of \( \cos(u) \) with respect to \( u \) is \( \sin(u) \). Thus,
\[ \frac{1}{3} \sin(u) + C \]
4. **Back-Substitute \( u \):**
Replace \( u \) with \( x^3 \) to get the final answer.
\[ \frac{1}{3} \sin(x^3) + C \]
### Final Answer:
\[ \int x^2 \cos(x^3) \, dx = \frac{1}{3} \sin(x^3) + C \]
Where \( C \) is the constant of integration.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fddf14729-dbf2-4574-b793-bebd8df9c378%2F3f9fd82c-b95c-402e-bad5-ce3172111558%2Frk3fpxo_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Statement:
Evaluate the integral:
\[ \int x^2 \cos(x^3) \, dx \]
### Solution:
To solve this integral, we can use the method of substitution.
### Step-by-Step Solution:
1. **Substitution:**
Let \( u = x^3 \). Then, \( du = 3x^2 dx \) or \( \frac{1}{3} du = x^2 dx \).
2. **Rewrite the Integral:**
Substitute \( u \) and \( du \) into the integral.
\[ \int x^2 \cos(x^3) \, dx = \int \cos(u) \cdot \frac{1}{3} \, du \]
3. **Simplify and Integrate:**
\[ \frac{1}{3} \int \cos(u) \, du \]
The integral of \( \cos(u) \) with respect to \( u \) is \( \sin(u) \). Thus,
\[ \frac{1}{3} \sin(u) + C \]
4. **Back-Substitute \( u \):**
Replace \( u \) with \( x^3 \) to get the final answer.
\[ \frac{1}{3} \sin(x^3) + C \]
### Final Answer:
\[ \int x^2 \cos(x^3) \, dx = \frac{1}{3} \sin(x^3) + C \]
Where \( C \) is the constant of integration.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning