Evaluate, using substitution f 24t5 4t6 +3 - dt. T

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Evaluate using substitution
### Problem Statement

Evaluate, using substitution:

\[
\int \frac{24t^5}{4t^6 + 3} \, dt.
\]

### Approach

To solve this integral using substitution, follow these steps:

1. **Identify the Inner Function**: Recognize that the denominator \(4t^6 + 3\) could be a good candidate for substitution.
   
2. **Substitution**: Let \( u = 4t^6 + 3 \). Then, find \( \frac{du}{dt} = 24t^5 \).

3. **Rewrite the Integral**: Substitute and rewrite the integral:
   \[
   \int \frac{24t^5}{4t^6 + 3} \, dt = \int \frac{1}{u} \, du
   \]

4. **Integrate**: The integration of \(\frac{1}{u}\) is \(\ln |u| + C\).

5. **Back-Substitute**: Replace \( u \) with the original function:
   \[
   \ln |4t^6 + 3| + C
   \]

### Conclusion

The evaluated integral is:
\[
\ln |4t^6 + 3| + C
\]

This method highlights the effective use of substitution in solving integrals, simplifying complex expressions into more manageable forms.
Transcribed Image Text:### Problem Statement Evaluate, using substitution: \[ \int \frac{24t^5}{4t^6 + 3} \, dt. \] ### Approach To solve this integral using substitution, follow these steps: 1. **Identify the Inner Function**: Recognize that the denominator \(4t^6 + 3\) could be a good candidate for substitution. 2. **Substitution**: Let \( u = 4t^6 + 3 \). Then, find \( \frac{du}{dt} = 24t^5 \). 3. **Rewrite the Integral**: Substitute and rewrite the integral: \[ \int \frac{24t^5}{4t^6 + 3} \, dt = \int \frac{1}{u} \, du \] 4. **Integrate**: The integration of \(\frac{1}{u}\) is \(\ln |u| + C\). 5. **Back-Substitute**: Replace \( u \) with the original function: \[ \ln |4t^6 + 3| + C \] ### Conclusion The evaluated integral is: \[ \ln |4t^6 + 3| + C \] This method highlights the effective use of substitution in solving integrals, simplifying complex expressions into more manageable forms.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning